

	Short chain PCAs		Medium chain PCAs			
PCA congener	Most abundant isotope (100%)	Second abundant isotope	PCA congener	Most abundant isotope (100%)	Second abundant isotope	
C ₉ H ₁₄ Cl ₆ C ₉ H ₁₃ Cl ₇	298.9 (X+2) 332.9 (X+2)	300.9 (X+4, 64%) 334.9 (X+4, 80%)	C ₁₄ H ₂₆ Cl ₄ C ₁₄ H ₂₅ Cl ₅	299.1 (X) 335.1 (X+2)	301.1 (X+2, 96%) 333.1 (X, 78%)	
C ₉ H ₁₂ Cl ₈ C ₉ H ₁₁ Cl ₉	366.9 (X+2) 402.8 (X+4)	368.9 (X+4, 96%) 400.8 (X+2, 89%)	C ₁₄ H ₂₄ Cl ₆ C ₁₄ H ₂₃ Cl ₇	369.0 (X+2) 403.0 (X+2)	371.0 (X+4, 64%) 405.0 (X+4, 80%)	
			C ₁₄ H ₂₂ Cl ₈ C ₁₄ H ₂₁ Cl ₉	436.9 (X+2) 472.9 (X+4)	438.9 (X+4, 96%) 470.9 (X+2, 89%)	
			$C_{14}H_{20}Cl_{10}$	506.9 (X+4)	504.9 (X+2, 78%)	
C ₁₀ H ₁₈ Cl ₄ C ₁₀ H ₁₇ Cl ₅	243.1 (X) 279.0 (X+2)	245.1 (X+2, 96%) 277.0 (X, 78%)				
C10H16Cl6	312.9 (X+2)	314.9 (X+4, 64%)	C ₁₅ H ₂₈ Cl ₄	313.1 (X)	315.1 (X+2, 96%)	
C ₁₀ H ₁₅ Cl ₇ C ₁₀ H ₁₄ Cl ₈	346.9 (X+2) 380 9 (X+2)	348.9 (X+4, 80%) 382.9 (X+4, 96%)	C ₁₅ H ₂₇ Cl ₅	349.1 (X+2) 383.0 (X+2)	34/.1 (X, 78%) 385.0 (X+4, 64%)	
C ₁₀ H ₁₃ Cl ₉	416.8 (X+4)	414.8 (X+2, 89%)	C ₁₅ H ₂₅ Cl ₇	417.0 (X+2)	419.0 (X+4, 80%)	
$C_{10}H_{12}Cl_{10}$	450.8 (X+4)	448.8 (X+2, 78%)	C ₁₅ H ₂₄ Cl ₈ C ₁₅ H ₂₃ Cl ₉	451.0 (X+2) 486.9 (X+4) 520.0 (X+4)	453.0 (X+4, 96%) 484.9 (X+2, 89%) 518.0 (X+2, 78%)	
C ₁₁ H ₂₀ Cl ₄	257.1(X) 293.0 (X+2)	259.1 (X+2, 96%) 291.0 (X-78%)	C ₁₅ H ₂₂ Cl ₁₀	520.9 (X+4)	518.9 (X+2, 78%)	
C ₁₁ H ₁₈ Cl ₆	327.0 (X+2)	329.0 (X+4, 64%)	C16H30Cl4	327.1 (X)	329.1 (X+2, 96%)	
C11H17Cl7	360.9 (X+2)	362.9 (X+4, 80%)	$C_{16}H_{29}Cl_5$	363.1 (X+2)	361.1 (X, 78%)	
$C_{11}H_{16}Cl_8$	394.9 (X+2)	396.9 (X+4, 96%)	$\mathrm{C_{16}H_{28}Cl_6}$	397.0 (X+2)	399.0 (X+4, 64%)	
C ₁₁ H ₁₅ Cl ₉	430.9 (X+4)	428.9 (X+2, 89%)	C ₁₆ H ₂₇ Cl ₇	431.0 (X+2)	433.0 (X+4, 80%)	
$C_{11}H_{14}Cl_{10}$	464.8 (X+4)	462.8 (X+2, 78%)	$C_{16}H_{26}Cl_8$	465.0 (X+2)	467.0 (X+4, 96%)	
			C ₁₆ H ₂₅ Cl ₉	500.9 (X+4)	498.9 (X+2, 89%)	

Conclusions: Fish livers	×
	AAC
s- and mCP concentrations in fish liver from North and Baltic species specific differences.	c Sea show no
s+mCP concentration ranges of North Sea (54-3880 ng/g ng/g lipid) and Baltic Sea comparable (90-3170 ng/g lipid, I lipid).	ı lipid, mean 985 mean 615 ng/g
Highest s+mCP contents are >1 ppm, comparable to PCB	burden.
s+mCP concentrations in cod liver from background are Islands/Iceland) are lower (46-265 ng/g lipid, mean 149 ng/g from North/Baltic Sea (range 62-3170 ng/g lipid, mean 622 r	eas (Lofot g lipid) than in coo ng/g lipid).
Cp congener patterns can be different in individuals from the	e same species.
Arctic char (200-2500 ng/g lipid, mean1005 ng/g lipid) from t has comparable CP content as cod from North/Baltic Sea.	the Bear Island

Acknowledgement	
Acknowledgement	AAC
	7010
Many thanks to my former PhD students Zdenek Zencak, Jana Hüttig	
and wargot rearring	
as well as for the financial support to the German Federal Environmental Agency and the Swiss Science Foundation.	
	1