

Sensi	tivity and	d Precisio	on of GC-	IRMS
Element	Analyzed gas	[nmoL] On-column	[ng] On-column	Precision
Carbon	CO ₂	0.8 nmoL C	10 ng C	0.2 ‰
Nitrogen	N ₂	1.5 nmoL N ₂	42 ng N	0.5 ‰
Hydrogen	H ₂	15 nmoL H ₂	30 ng H	3 ‰
Oxygen	со	80 nmoL O	80 ng O	0.8 ‰

Carbon a	nd hydrogen frad	ctionation of ber	n zene d	egradati	ion pathways
Organisms	Condition	Pathway	εC	εH	Reference
P. Putida	aerob	Dioxygenase	<-0.6	<-0.7	Herklotz 2006
R. Picketii PK01	aerob	Monoxoygenase	-1.8	-4.7	Herklotz 2006
R. Eutropha	aerob	Monooxygenase	-4.3	-19.7	Herklotz 2006
Enrichment Enrichment Enrichment	nitrate reducing sulphate reducing methanogenic	?? g ?? ??	-2.4 -3.6 -1.9	-29 -79 -60	Mancini et al. 2003 Mancini et al., 2003 Mancini et al., 2003
Sand column Sand column	sulphate reducing sulphate reducing	g ?? g ??	-1.5 -1.9	-45.8 -70.2	Fischer et al., 2006 Fischer et al., 2006

Isotopic e	nrichment facto	rs (ε) for an	aerobic	biod	degradation of MTBE
Source	Condition	e (‰)	R2	n	References
Arthur Kill	Sulfate reducing	-145+25	0 9783	7	
	duplicates	-13.9 ± 5.6	0.8900	7	
Coronado Cays	Sulfate reducing,	-14.4 ± 1.5	0.9814	6	
,	two enrichments	-14.0 ± 1.5	0.9914	8	
Coronado Cays	methanogenic,	-14.4 ± 3.6	0.9948	5	
	two enrichments	-13.7 ± 1.5	0.9925	7	Somsamak et al. 2005
Arthur Kill	methanogenic	-15.6 ± 4.1	0.9662	6	Somsamak et al. 2005
	with inhibitor of	-14.6 ± 5.2	0.8634	9	
All data, ε (‰) ± Interval	95% Confidence	-14.4 ± 0.7	0.9690	55	
anaerobic labora	atory microcosms	-9.16 ± 5.0	0.728		Kolhatkar et al. 2002
anaerobic field		-8.10 ± 0.9	0.946		Kolhatkar et al. 2002
anaerobic laboratory enrichment		-13.0 ± 1.1			Kuder et al. 2005

MTBE						
Culture	<mark>еС[‰]</mark>	<mark>єН [‰]</mark>	Reference			
Enrichment culture (Borden aquifer, Canada)	-1.52 to -1.97	na	Hunkeler et al. 2001			
VAFB mixed consortium, CA	-1.5 to -1.8	-29 to -66	Gray et al. 2002			
strain PM1, Los Angeles	-2.0 to -2.4	-33 to -37	Gray et al. 2002			
strain R8	-2.35	-40	Rossel et al. 2006			
strain L108	-0.48	No enrichment (-0.2)	Rossel et al.2006			
strain IFP 2001 (resting cells)	-0.28	No enrichment (+5)	Rossel et al. 2006			
anaerobic microcosm	-8.6	-16	Kuder et al., 2005			
methanogenic/ sulfate recucing enrichment cultures	-14.6	n.d.	Somasmak et al., 2005/06			

Isotope fractionation has been applied to evaluate ground water contamination by

- fuel related compounds (BTEX and MTBE)
- chlorinated solvents
- halogenated aromatic compounds

(see Meckenstock et al. 2004, JCH, for an recent overview)

Uncertainties associated to assess in situ biodegradation in the course of a contamination plume

- analytical uncertainty determining the isotope ratio (R_t; R₀) and concentration (C_t;C₀)
- selection of a representative fractionation factor (α)
- determination of a representative source concentration (C₀)
- variability of the isotope composition of the source (R₀)
- aquifer inhomogeneities and associated mixing processes

υ

Isotope fractionation processes (α C, α D) can be used to characterise anaerobic and aerobic BTEX and MTBE degradation processes in the field

Potential for monitoring operation and quantification of in situ biodegradation

More systematic work is needed on isotope fractionation of fuel oxygenates to obtain fractionation factors (α C, α D)

We need to understand degradation pathways and the physiology of anaerobic microbial in situ communities

