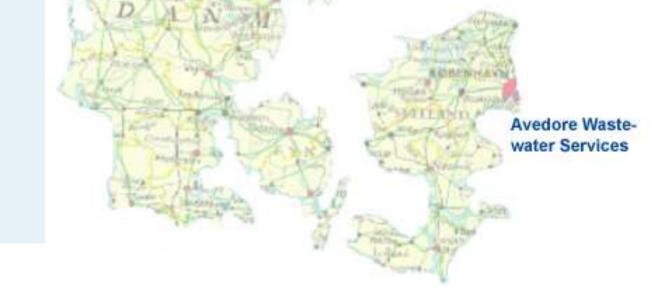
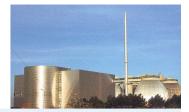


4th NORMAN Workshop "Integrated chemical and bio-monitoring strategies for risk assessment of emerging substances" 17-18 March 2008, Lyon, France

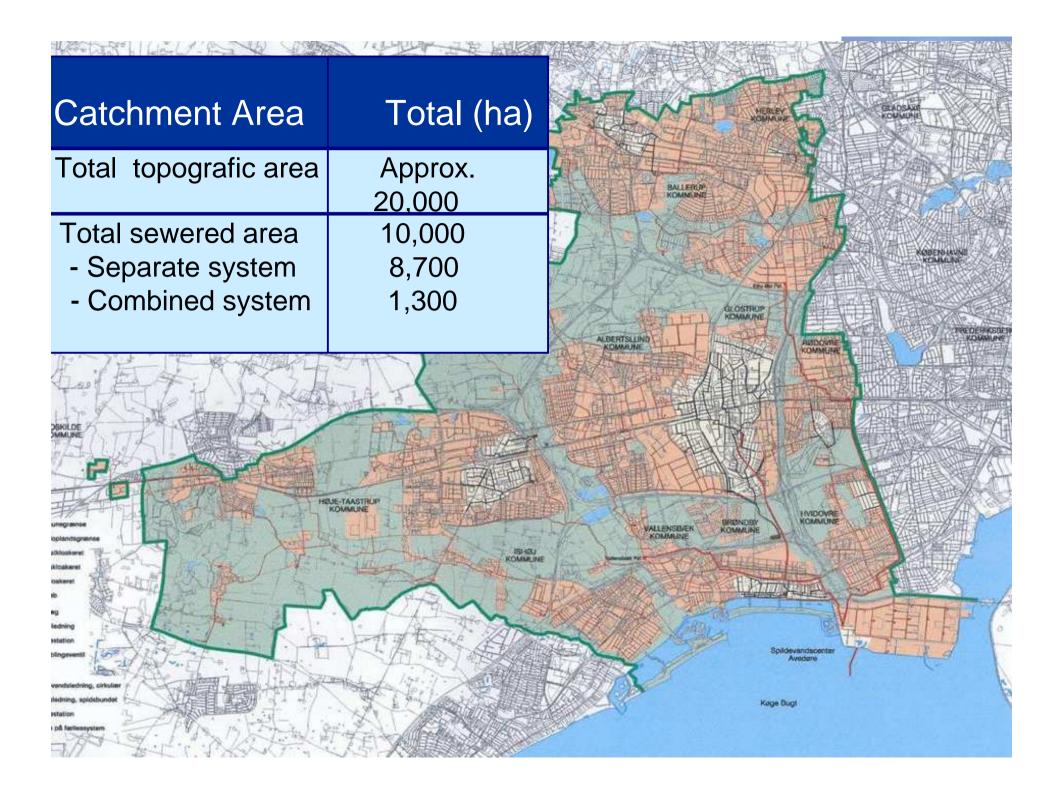
Combined chemical analyses and biomonitoring at Avedoere WWTP


by Bo N. Jacobsen, Head, Planning and Development Avedoere Wastewater Services


The general situation in Denmark

for wastewater management

- All plants owned by the public sector
- A few operated by private contractors
- Financing by traditional utility model (i.e. consumer pays)
- Non profit organisation
- Average fees wastewater: 15 DKK/m3 about 2 €/m3

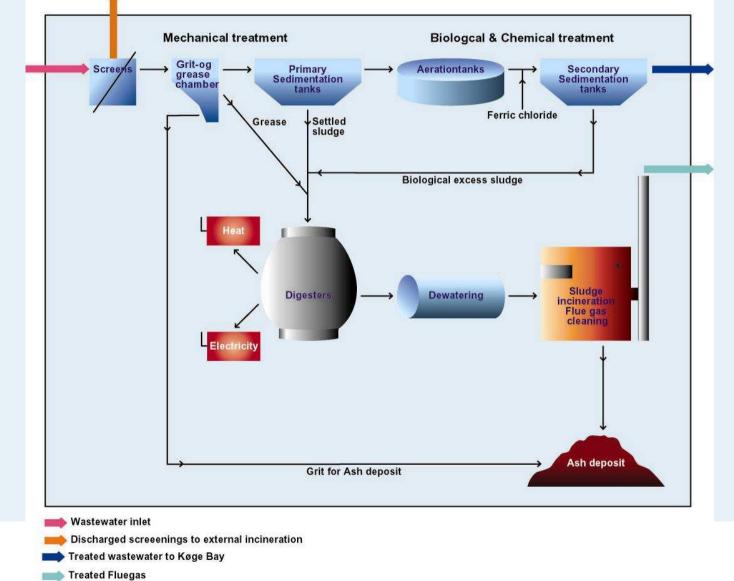


Avedøre Wastewater Services

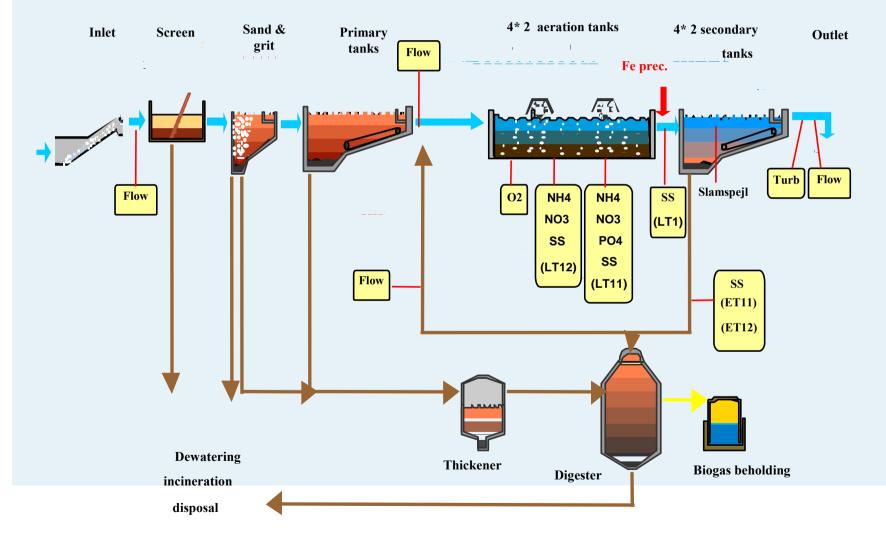
Avedoere Wastewater Services Information Centre (Visitors 2006: 5.800)

Public Awareness

- Citizens from the 10 municipalities
- School services/ education
- Exhibition
- Networking


Public Information

- Green account
- Annual report
- website


Flow

Position of on-line sensors, Avedøre

Effluent standards 2007

Effluent standards

Parameter	Criteria ¹⁾ (mg/l)	Compliance assessment ¹⁾ (mg/l)	Flow-weighted average 2007 (mg/l)
Organic matter (COD)	< 75	30	31
Organic matter (BOD ₅)	< 15	3,1	3,8
Total nitrogen (N)	< 8	4,6	5,9
Total phosphorous (P)	< 1,5	0,65	0,7
Suspended solid (SS)	< 20	12	15

Environmental authority: Region Roskilde

¹⁾ Yearly average evaluated on a statistical basis

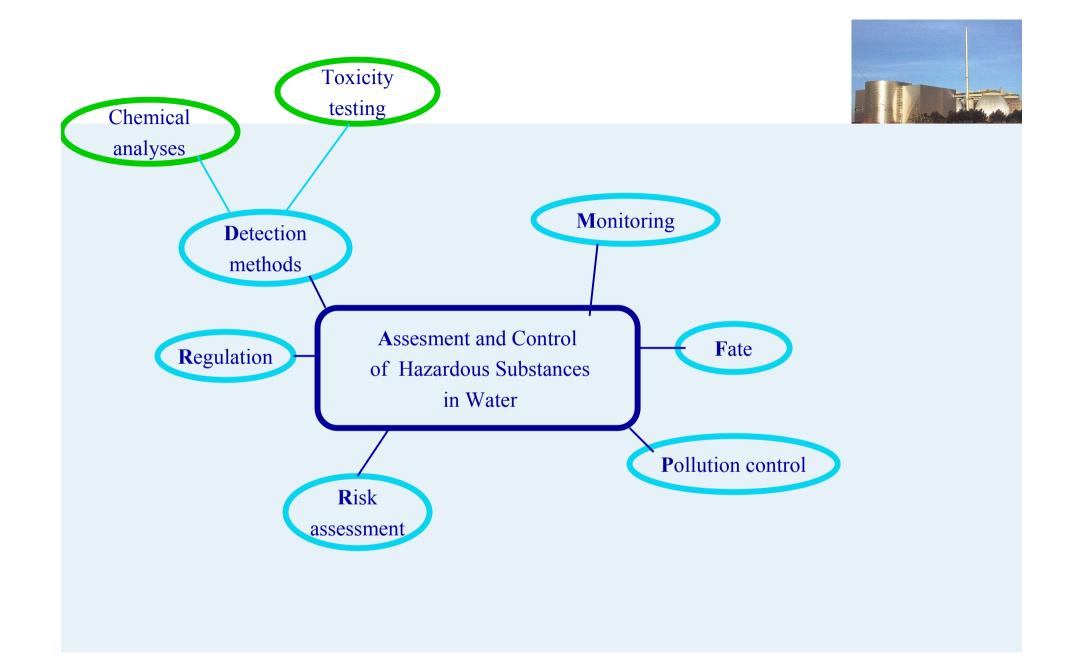
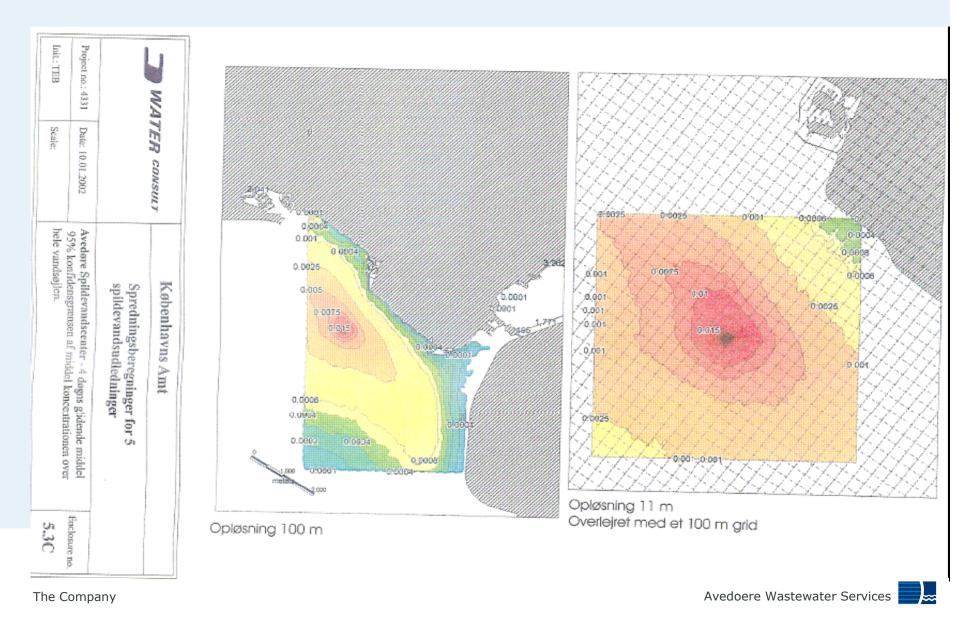


Table 1 Selected compounds identified in plant 1 (μ g/L)

	Raw water	Raw water+	Treated	Seine river	Seine river
Compound		recycled	water	upstram of	after WWTP
		waters		WWTP	
2-Butoxyethanol (butylglycol)	110.2	140.6	< 0.1	< 0.1	< 0.1
Butoxyethanol phosphate	15.7	7.8	0.7	1.3	0.3
2-Méthoxyethyl éther	1.5	< 0.1	0.5	< 0.1	< 0.1
Dipropylene glycol méthyl éther	10.1	24.8	0.6	< 0.1	< 0.1
2-Butoxyethoxyéthanol	317.0	1270.0	< 0.1	< 0.1	< 0.1
1,1-Methyl-2-(2-propenyloxy)ethoxy-2-	3.9	< 0.1	< 0.1	< 0.1	< 0.1
propanol					
Nonylphénols	< 0.1	5.9	< 0.1	< 0.1	< 0.1
Diethyl phtalate	12.5	26.9	< 0.1	< 0.1	< 0.1
Butyl isobutyl phtalate	0.8	82.1	11.1	3.2	4.4
Benzylbutyl phtalate	< 0.1	21.3	< 0.1	< 0.1	< 0.1
Diisooctyl phtalate	46.4	102.2	16.3	9.1	14.3
Nicotine	Traces~ 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Caffeine	34.1	70.1	0.3	0.1	0.1
Camphor	3.5	4.7	< 0.1	0.1	< 0.1
β-Sitosterol	13.6	19.3	< 0.1	< 0.1	1.2
Stigmastanol	1.8	3.3	< 0.1	< 0.1	< 0.1
17-β-estradiol *	0.010	NA	0.003	NA	NA
Estriol*	0.015	NA	0.004	NA	NA
Estrone*	0.020	NA	0.008	NA	NA
Ethinyl-estradiol*	0.0025	NA	0.00014	NA	NA
Sunscreen UV 15	1.6	0.9	< 0.1	< 0.1	< 0.1

*specific quantitative method

The Company


Effluent Concentrations Avedoere WWTP in relation to Water Quality Standards, WQS (DK Statutory Order 921)

	VKK,	Indløb/VKK			Uc	lløb/VK∤	< ¹)	Rensnings-
Stofnavn	g/l	>1	>5	>20	>1	>5	>20	grad ²), %
Nonylphenoler (NP+NPE)	0,03			х		х		90
PAH'er								
Phenanthren	0,001			х			х	85
Benz(a)anthracen	0,001			Х				>95
Fluoranthen	0,001			х				>90
Benzo(e)pyren	0,0005			х				>45
Benzfluranthen b+j+k	0,001			Х				>97
2-methylphenanthren	0,00003			х				85
Fluoren	0,001			Х				>80
Anthracen	0,01		х					>65
Pyren	0,001			х				>90
Benz(a)pyren	0,001			Х				>35
Arsen	4	х						45
Bly	5,6	х						80
Chrom	1,0			х		х		65
Kobber	2,9			Х	Х			90
Kviksølv	0,3	х						>85
Nikkel	8,8	х			х			30
Benzylbutylphthalat	0,8		Х					>98
Dibutylphthalat	1,0	х						>55
Triphenylphosphat	0,001			Х			Х	95
Stoffer kun målt i udløb								
Cyanid, total	5				Х			
Barium	15						х	

¹) Udløb/VVK < 1, hvis der ikke er anført et "x"

²) Beregnet som: 100%*(gns.indløb-gns.udløb)/gns.indløb, og afrundet til nærmeste 5%

Spredningsberegninger – Kbh. amt

Toxicity testing / "explainability" - example

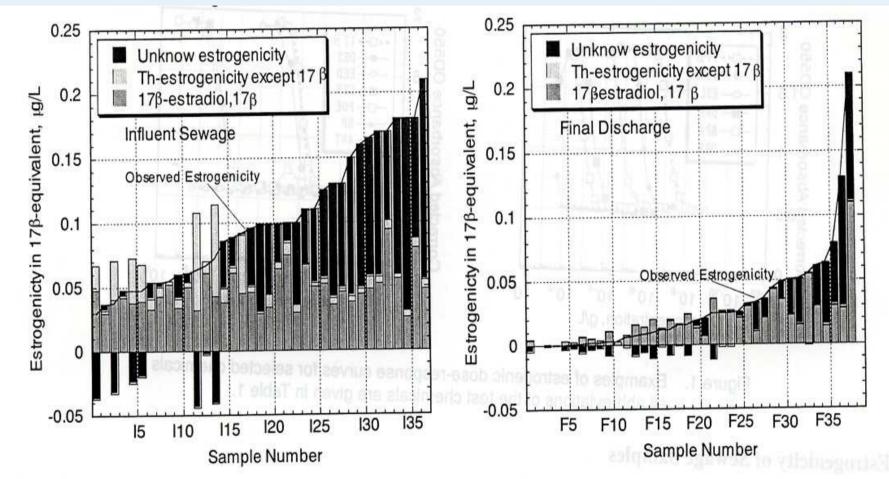


Figure 4. Estrogenicity, 17β-estradiol and theoretical estrogenicity observed in influent sewage and final discharge in all the sewage treatment plants in this study

(Tanaka et al, 2000) Avedoere Wastewater Services

Data provided by County of Copenhagen; WQS and EC50 compiled by DHI (2003)

	Average co	ncentrations	Load		
Parameter	influent	effluent	reduction	WQC	EC50
Heavy metals	μ	g/l	%	μ	g/l
Lead, Pb	13	2.8	80	0.65	2655
Chromium, Cr	24	9.4	62	1	153
Copper, Cu	85	8.0	91	2.9	31
Nikkel, Ni	19	13.5	32	8.3	180
Zink, Zn	220	70	68	86	196
Phenols					
nonylphenol	4.0	0.32	92	0.03	410
bisphenol A	1.7	0.28	85	1	2600
Halogenated aliphatic	hydrocarbon:	S			
Dichlormetane	27	-	-	10	660000
Vinylchlorid	0.66	-	-	0.2	942
Polyaromatic hydroca	rbons				
Pyrene	0.10	0.01	93	0.001	256
Phosphorous-tri-esters	5				
Triphenylphosphate	1.4	0.09	93	0.001	230
Plastic softeners					
DEHP	34	1.28	96	0.1	960
Diethylphthalate	10	-	-	3	69500
Anionic detergents					
LAS (C10-C14)	1700	10	99	10	53700
Other List I dangerous	substances				
Barium, Ba		319		10	
Cobolt, Co		15		1	180
Selenium, Se		1.8		0.5	99000

Algae toxicity

Toxic Units for EC10,72h

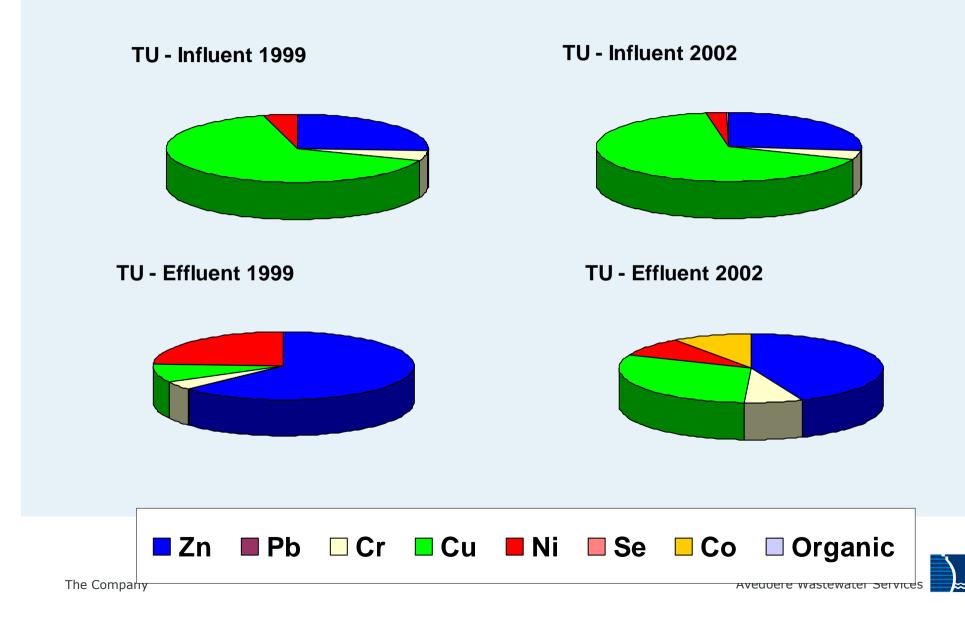

(DHI, 2006;)

Year	n	Influent *	Effluent
1999	4	21	< 3,3
2002	4	28	< 2
2005	4 / 2 **	21	< 2

Arithmetric average of flowproportionale week composite samples

- Algae: *Pseudokirchneriella subcapitata*; ISO Standard 8692
- * incl. Reject water **
- 4 influent- og 2 effluent samples

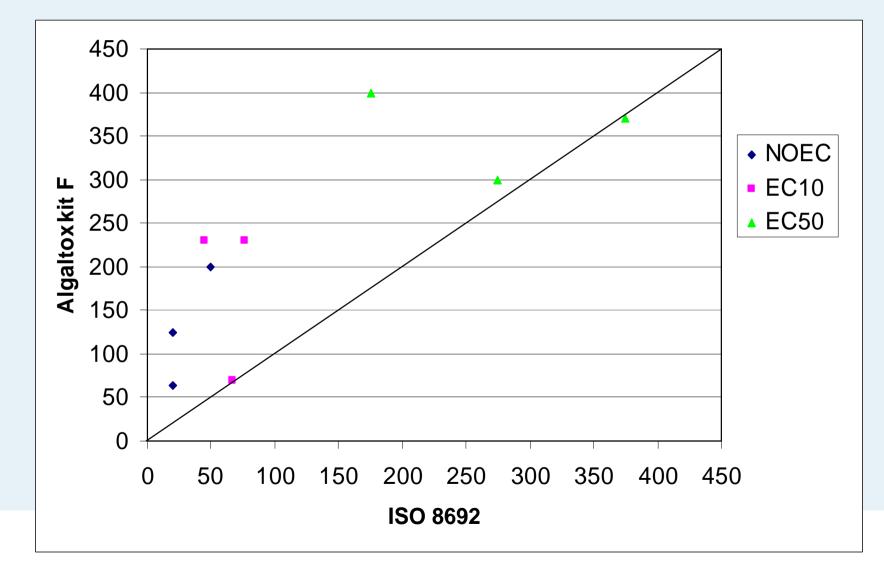
Measured and calculated toxic units (TU) for Avedoere WWTP influent and effluent samples 1996, 1999, og 2002 (DHI, 2003):


 \sum TU_i values are based on EC50-values for freshwater algae.

Sample	Sample No.	19	96	19	99	2002		
	Measured Calculated		Measured	Calculated	Measured	Calculated		
		TUb	ΣTU_i	TUb	ΣTU_1	TUb	$\sum TU_1$	
Influent	1	<4	6	<5	4,3	5,8	5,2	
	2	<4	5	<5	4,4	<5	3,8	
	3	<4	7	3,7	5,2	2,7	3,4	
	4			5,3	5,5	11	5,3	
	1			<3,3	0,5	<2	1,0	
Effluent	2			<3,3	0,5	<2	0,6	
	3	3		<3,3	0,6	<2	0,8	
	4			<3,3	0,3	<2	1,0	

Contributions to calculated Toxic Units for algae EC50 Avedoere WWTP

Comparisons of EC50 and LC50 for different test methods


Toxkit data provided by Persoone (2003)

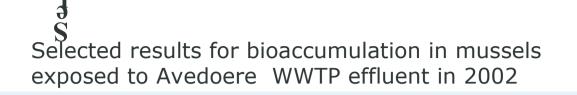
Toxic unit [-] = 10	000 / L	(E)C50 [ml/l]				
AVEDORE WASTEWATER SERVICES		Thamno Toxkit F	Daphtoxkit F		Algaltoxkit F	ISO 8692
Year 2002		24h LC50	24h LC50	48h LC50	72h E(C50
Influent week 15		2.5	1.2	1.3	2.5	5.7
Influent week 22		2.8	1.2	1.3	3.3	3.6
Influent week 24		1.8	1.0	1.3	2.7	2.7
Influent week 36						11.1
Effluent week 15		< 1	< 1	< 1	not toxic	< 2
Effluent week 22		< 1	< 1	< 1		< 2
Effluent week 24		< 1	< 1	< 1	< 1	< 2
Effluent week 36						< 2

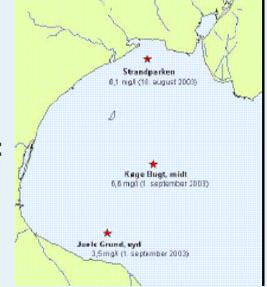
The Company

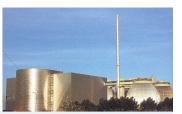
Endocrine disruptors

	A			~
		Relative	Relative increase	
	Fish species	ww-proportion	compared to blank	
	Juvenile Rainbow	56%	2%	Section Section (1)
	Trout			
1		78%	8%	
244		pos. Control	350%	
10	Male Flounder	65%	84%	Section 2.
7		82%	78%	
A.		pos. Control	800%	
	Juvenile Silvereel	56 - 82 %	no increase	
		pos. Control	350%	
				I III

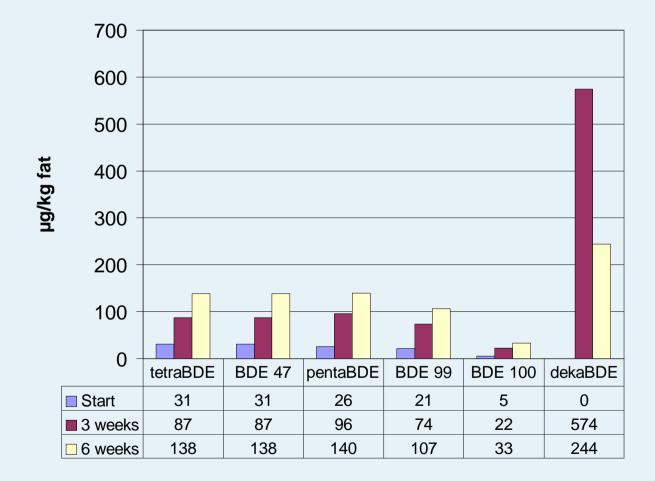
Parameter	Unit		Influent			Eff	uent
			average	range		average	range
Specific hormones							
Estrone (E1)			45	19 - 75		7	5 - 11
17b-estradiol (E2)	ng/		13	6.1 - 27		1.5	< 0.1 - 4.5
17a-ethinylestradiol (EE2)			1.0	< 1 - 1.7		2.2	< 1 - 5.2
Other endocrine disruption	n comp	ou	nds (EDCs)				
Nonylphenol			3.9	3.5 - 4.1		0.2	< 0.2 - 0.3
NPE, 1-2 EO			4.0	2.3 - 4.9		0.1	< 0.1 - 0.2
Octylphenol			< 0.1			< 0.1	
Bisphenol A			2.2	1.0 - 2.7		0.6	0.1 - 1.4
Diethylphthalat	a/		10	10 - 11		< 0.2	
Di-n-butylphthalat	—µg/I		2.2	1.5 - 2.5		< 0.5	
Butylbenzylphthalat			1.0	0.7 - 1.5		< 0.1	
Diethylhexylphthalat			45	43 - 46		< 0.5	
Di-n-octylphthalat			0.1	< 0.1 - 0.2		< 0.1	
Di-iso-nonylphthalat			0.1	< 0.1 - 0.2		< 0.1	



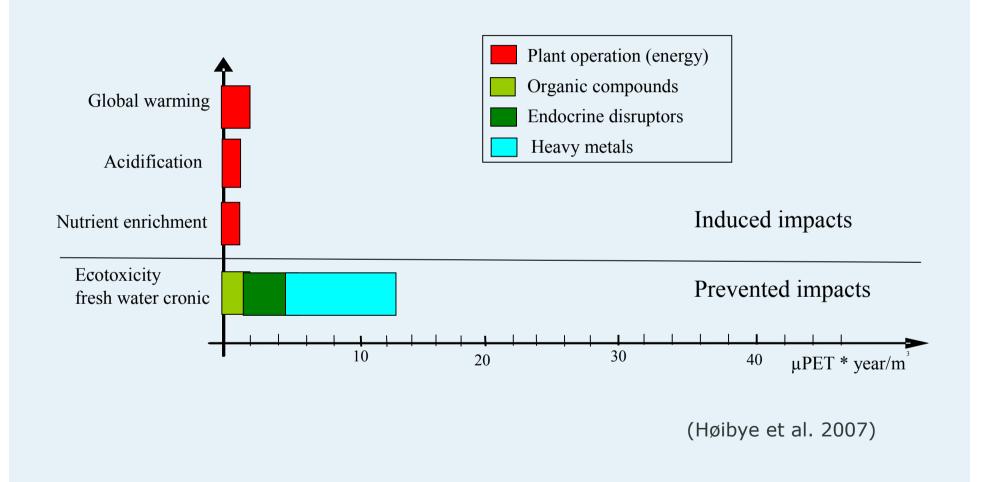




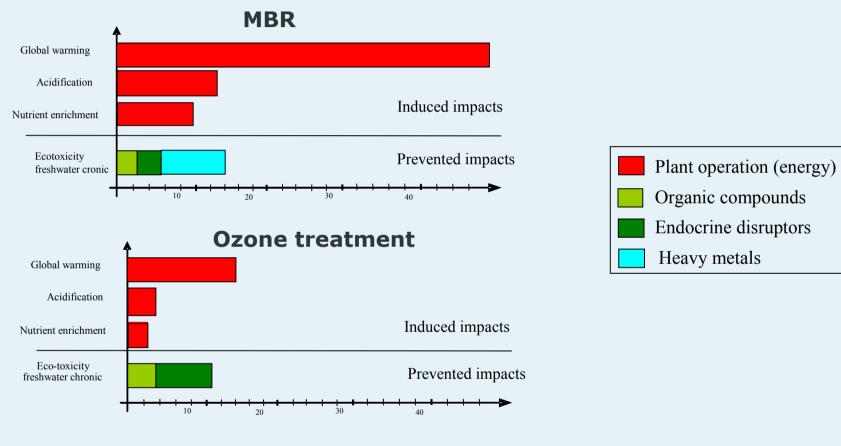
Weeks		Diethyl-	DEHP	LAS	EOX		Cr	Ni	
of exposure		phthalate		(C10-C14)					
		ug/kg fat		mg/kg TS			mg/kg TS		
0		33	62	< 5	52		0.4	3.5	
3		110	39	36	122		0.5	3	
7		210	43	13	106		1.8	6	
No bioaccumulation was observed for 101 other organic compounds and 8 other heavy metals									
Mussle: Dreissena polymorpha					Exposure period: 28 May - 15 July, 2002				


- Observed accumulation in mussels in Avedoere WWTP effluent in 2005:
 - Cr
 - 5 PAH specific compounds
 - Plastic softeners (DEHP)
 - LAS
 - 6 bromated flame retardants
- Observed accumulation in mussels in Koege Bay:
 - Cd, Hg, Cu
 - PAH
 - TBT

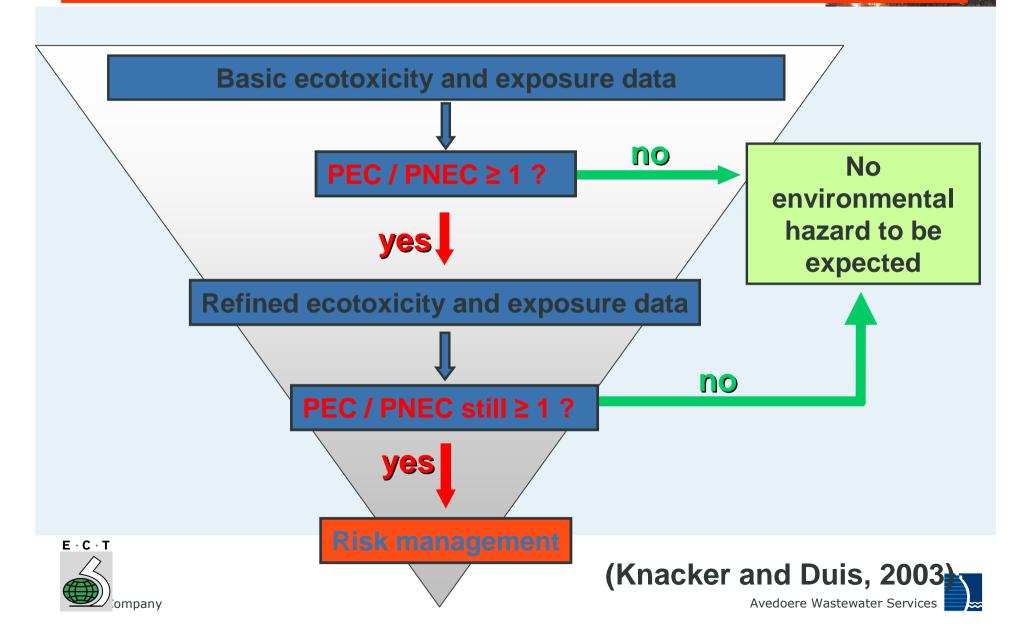
bioaccumulation in mussels (2005) Bromated flame retardants


How can we reduce emissions ?

- Prevention
 - Product regulation (nationally, internationally, REACH, POP-Convention,..)
 - Affect attitudes / behaviour (campaigns, public awareness activities)
 - Environmental regulation (connection permits for industries, cleaner production methods)
- Improve Treatment
 - Optimisation of WWTP operation (sufficient SRT, ..)
 - Advanved treatment technology (UV, advanced oxidation, membranes, ..)


Advanced wastewater treatment ? Example of LCA evaluation of sand filtration

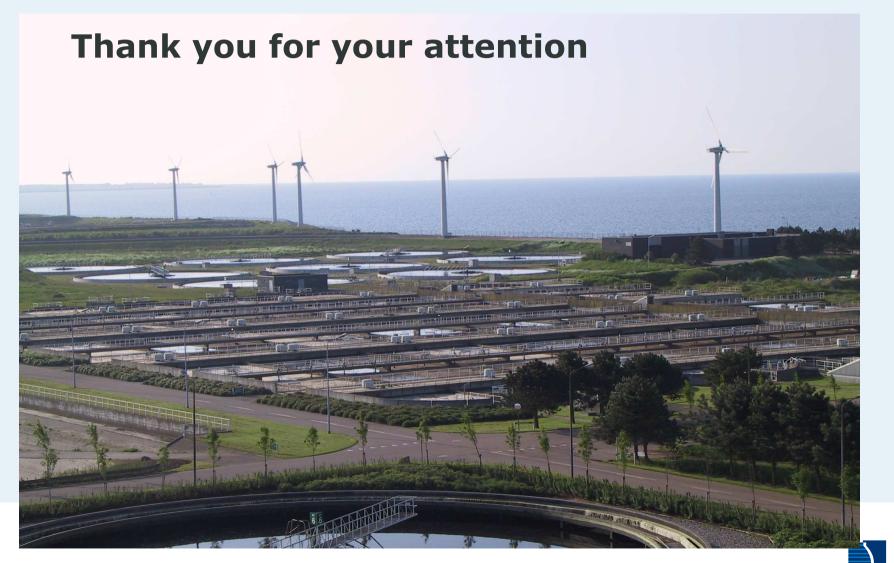
Advanced wastewater treatment ? Example of LCA evaluation of MBR and ozonation


(Høibye et al. 2007)

Some regulatory considerations

- Product regulations
 - Are the OECD tests adequate (field realistic concentration levels)?
- Immission standards
 - Receiving water quality criteria exist are the analytical methods good enough ?
 - Which time and spatial resolution is needed ?
- Effluent standards for a long lists of specific compounds ?
 - Can we measure everything ?
 - Better to spend resources on treatment technology than on extended monitoring ?
- Whole effluent assessment, including eco-toxicity ?
 - Which toxicity tests should be included ?
 - Are marine toxicity tests representative for brackish waters ?
 - Is it reasonable to base PNEC values on most stringent test results per species ?
 - Can we quantify bioaccumulation and persistance ?
- BAT
 - Should UV and/or membrane treatment technology be mandatory ?
 - Are advanced treatments sustainable in terms of material resource and energy consumptions ?

Tiered risk assessment approach



- WWTP with nutrient removal (long SRT) is quite effective in removal of hazardous substances
- Endocrine disruption potential remains but at a low level hormones >> other EDCs
- Good agreement between measured and calculated algal EC50 values – heavy metals major cause
- Reasonable agreement between ISO 8692 and Algaltoxkit F_™ mini test may be useful for WWTPs

- Combined chemical analyses and biomonitoring give added information value
- Bioaccumulation studies of WWTP effluents are useful for shortlisting of specific hazardous substances of concern
- Whereas standardised methods have been established for risk assessment of specific substances there is in EU a need for standardised / uniform methods for whole effluent assessment
- Future environmental regulations should include initial screening steps and only introduce further risk assessment and/or emission standards for "problematic" effluents

