3rd IPSW. May 2009. Prague.

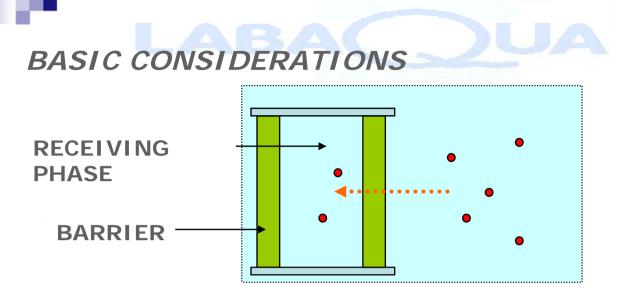
Continuous Flow Integrative Sampler (CFIS). An innovative device for time weighted average monitoring.

I. Valor, E. Capilla, R. Tortajada, J. Llorca, P. Navalón

Department of Chromatography. LABAQUA S.A.

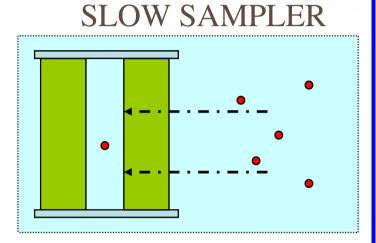
Alicante, Spain.

www.labaqua.com

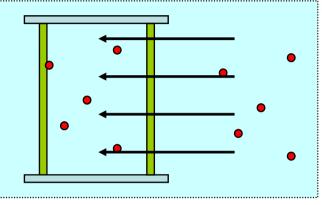


- Basic considerations
 More in depth considerations
 Thougths for discussion
- Objective
- Description of the device
- Testing and results
- Conclusions

 ✓ Sampling rate, Rs : "amount of contaminant accumulated per unit time". Rs (D, geometry, <u>turbulence</u>, temperature, biofilm)


✓ Lag time: Time in which contaminants reach the steady state along the different barriers.

✓ t ½ : Linear integrative period


✓ Practical and economical aspects: biofilm, analitycal method, cost per sampler, etc.

MORE IN DEPTH CONSIDERATIONS

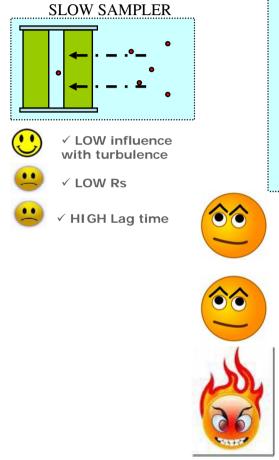
✓ LOW influence with turbulence

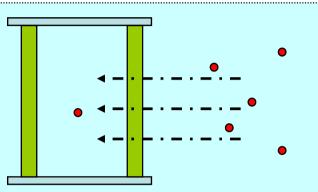
✓ LOW Rs

✓ HIGH Lag time

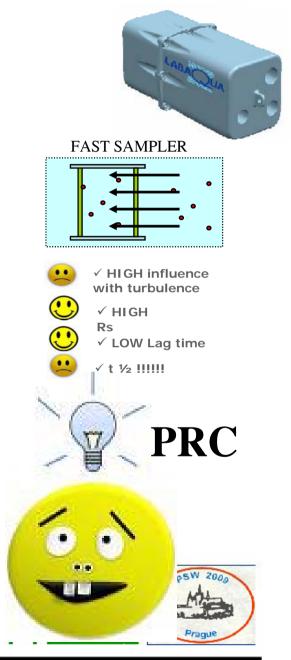
✓ HIGH Rs

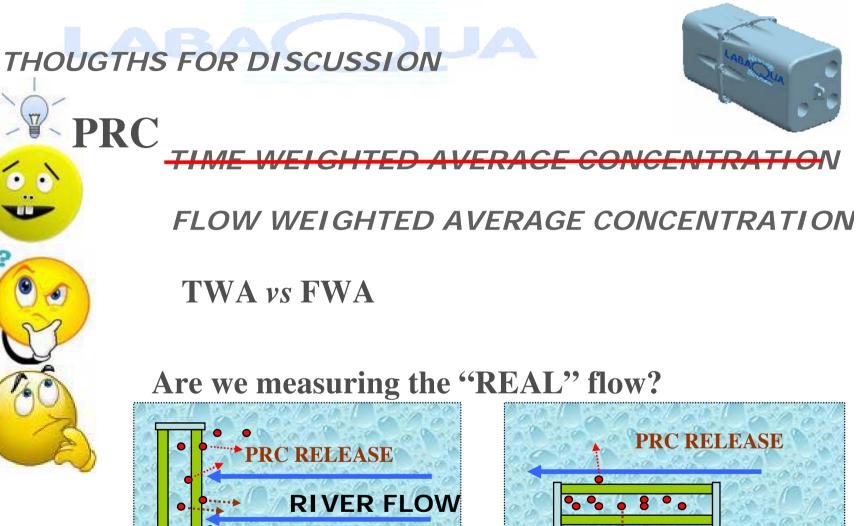
✓ LOW Lag time




✓ HIGH influence
 with turbulence

MORE IN DEPTH CONSIDERATIONS COMPROMISE




✓ MEDIUM Rs

✓ MEDIUM Lag time

✓ MEDIUM influence with turbulence

RIVER FLOW

THE OBJECTIVE

DEVELOPMENT OF A NEW SAMPLING DEVICE (APOLAR COMPOUNDS):

1.-TIME WEIGHTED AVERAGE (TWA) VALUES

2.-SAMPLING RATES (Rs) INDEPENDENT FROM THE IN-FIELD TURBULENCES.

3.-LOW OR NEGLIGIBLE LAG TIME.

4.-t ¹/₂ > 5 days

5.-"COMPETITIVE" PRICE.

THE MONEY

FUNDED PROJECTS ON PASSIVE SAMPLING

DURATION	ORGANISM	FUNDED AMOUNT €
2006-2007	MINISTERIO DE INDUSTRIA, TURISNMO Y COMERCIO (MITYC)	62,450
2007-2008	MINISTERIO DE MEDIO AMBIENTE	26,919
2007-2008	IMPIVA	15,906
2007-2008	Applus	22,118
2007-2011	CDTI	125,000
2009-2010	MINISTERIO DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO	40,440
2008-2010	MINISTERIO DE CIENCIA E INNOVACIÓN (INSTITUTO ESPAÑOL DE OCEANOGRAFÍA)	16,000

TOTAL FUNDED

FIRST APROACHES

✓ LITERATURE REVIEW AND LEARNING PROCESS:

- B.Vrana: theoretical and practical aspects on PS.
- R. Greenwood: Chemcatcher.
- Audrone Zaliauskiene: SPMD.
- A.Paschke: MESCO.

✓ **SELECTION OF THE RECEIVING PHASE** : PDMS

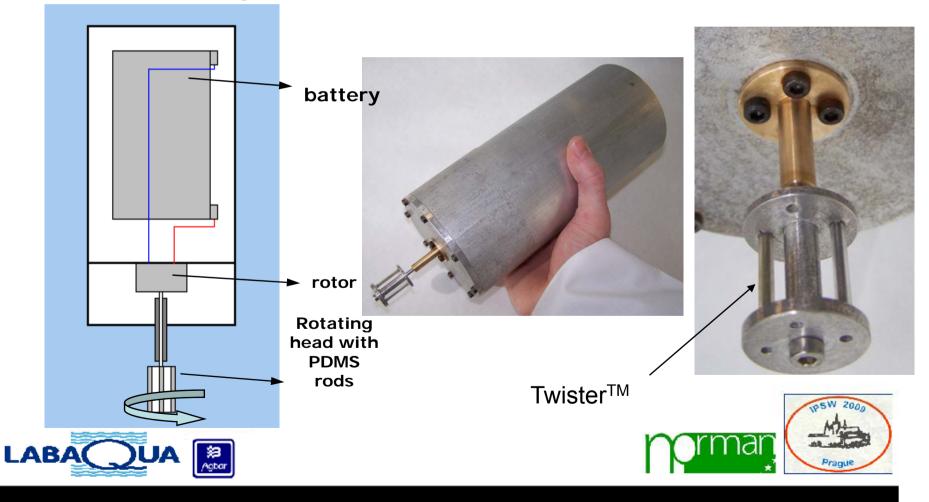
✓ Experiments with MESCO and some variations around this device.

FIRST APROACHES

TWA, Rs not affected by turbulences, low Lag time

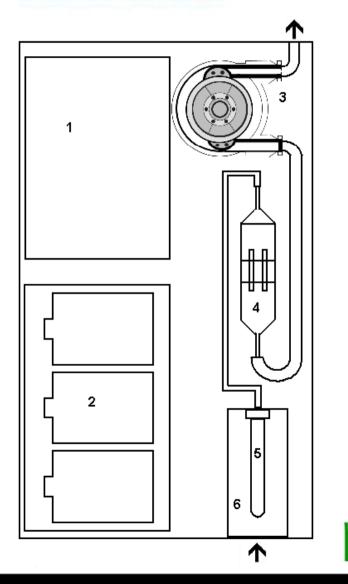
COMPROMISE

ABANDON PASSIVE SYSTEMS


Introduce some "small energy" to control turbulence

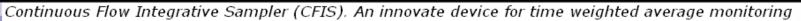
Previous prototypes

CSS: Constantly Stirred Sorbent

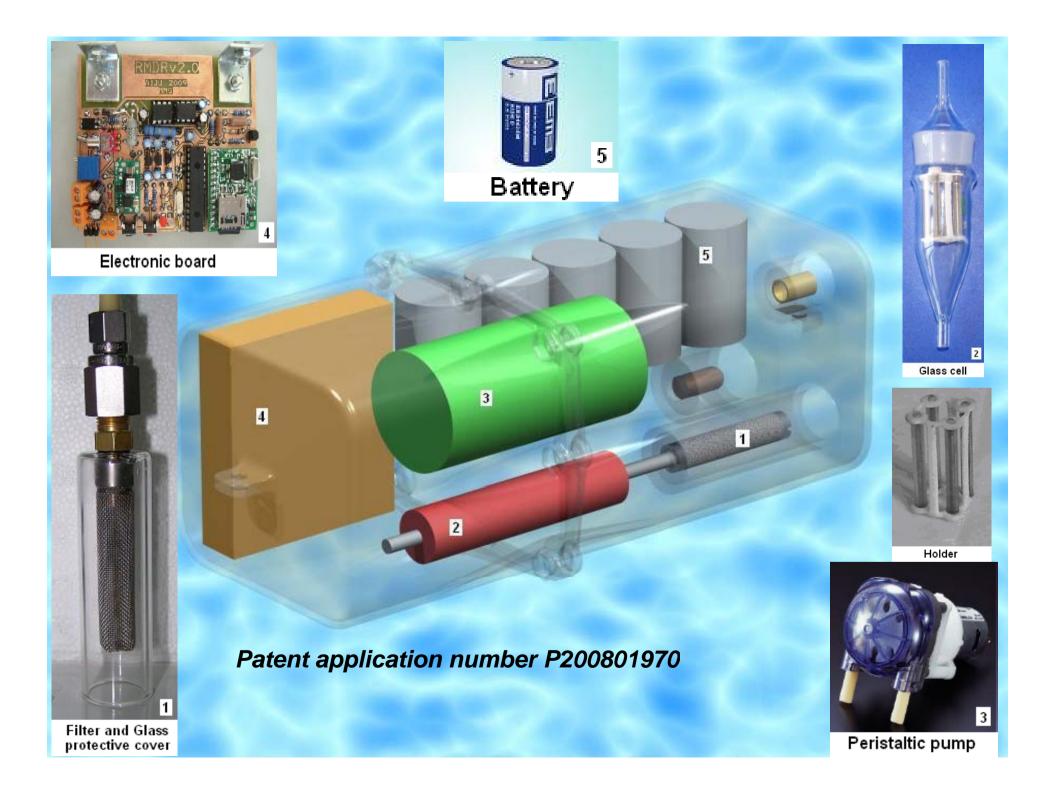


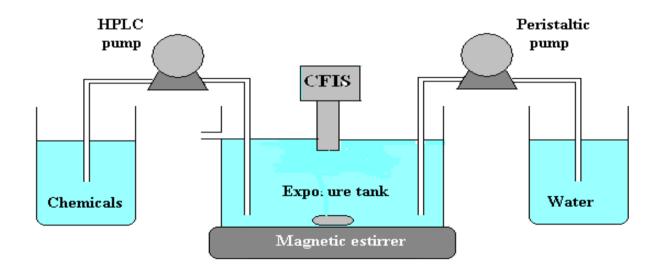
Continuous Flow Integrative Sampler (CFIS)

Basic scheme



- 1.- Electronic board .
- 2.- Lithium batteries.
- 3.- Mini-peristaltic pump.
- 4.- Glass cell with sorbent.
- 5.- Stainless steel filter
- 6.- Glass sleeve.





Materials and methods

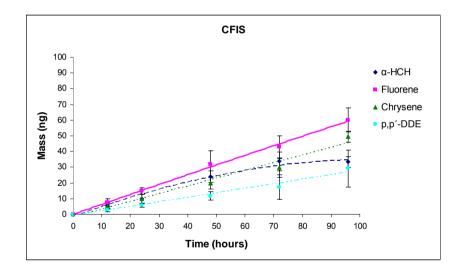
Scheme of the flow through exposure system.

Materials and methods

Selected physicochemical properties of test analytes. (Dw : Diffusion coefficients in water).

Compound	MW	log K _{ow}	log K _{PDMSW} ^c	D _w ^d
Lindane	290.8	3.8 ^b	3.36	5.4 × 10 ⁻¹⁰
α-HCH	290.8	3.9 ^b	3.44	5.4×10^{-10}
Fluorene	166.2	4.2ª	3.68	$6.8 imes 10^{-10}$
Phenanthrene	178.2	4.5ª	3.93	6.6 × 10 ⁻¹⁰
Fluoranthene	202.3	5.1ª	4.42	6.3×10^{-10}
Chrysene	228.3	5.7ª	4.91	5.8×10^{-10}
p,p´-DDE	318.0	6.1 ^b	5.24	5.1×10^{-10}
Benzo[a]pyrene	252.3	6.2ª	5.32	5.5×10^{-10}
	Mackay, W.Y. Shid, K.C. Ma,			5.3×10^{-10}

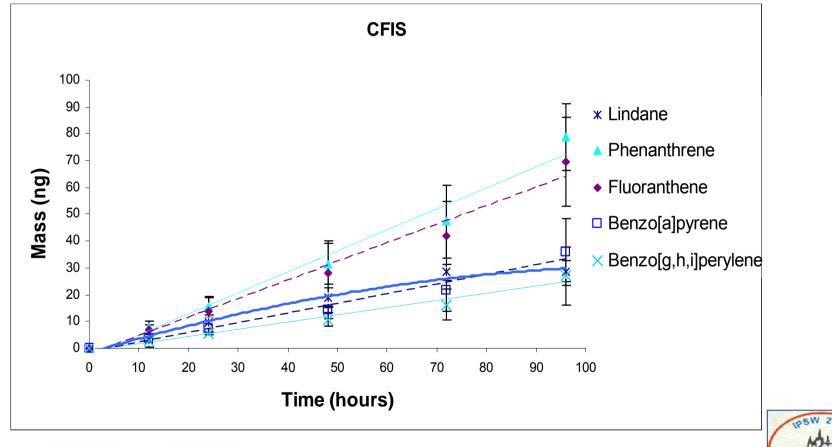
b: A. Paschke, P. Popp, J. Chromaogr. A, 999 (2003) 35. c: R.A. Doong, S.M. Chang, Anal. Chem., 72 (2000) 3647.


d: Diffusion coefficient in water (m2s-1) from Hayduk-Laudie equation. Compound molar volume estimated from Schroeder equation.

Results and discussion

LabaQua

Accumulation time profiles with CFIS



Results and discussion

LandQua Co

Accumulation time profiles with CFIS

Results and discussion

Main performance parameters obtained with CFIS

Compound	t ₅₀ (h)	R _s (L/day)	Equation	R ²
Lindane	51	0.032	y=0.41x-0.69	0.982ª
α-HCH	49	0.038	y=0.49x-0.55	0.980 ^a
Fluorene	80	0.050	y=0.64x-0.07	0.979 ^b
Phenanthrene	120	0.053	y=0.48x-0.99	0.982°
Fluoranthene	519	0.047	y=0.43x-0.79	0.976 ^c
Chrysene	2494	0.033	y=0.303x-0.59	0.972°
p,p′ -DDE	7723	0.020	y=0.13x-0.45	0.976°
Benzo[a]pyrene a cal b cal	culated for t : 0 culat 2859 t: 0,	, 12, 24 and 48 12, 940248 and	h. 72y=0.21x-0.69	0.976°
c cal	culated for t : 0	, 12, 24, 48, 72		0.976 ^c

Results and discussion

LOD calculated for CFIS

Compound	CFIS (pg/L) ^a
Lindane	63
а-НСН	91
Fluorene	20
Phenanthrene	15
Fluoranthene	4.0
Chrysene	12
p,p´ -DDE	144
Benzo[a]pyrene	200
Benzo[ghi]perylene	544 5 dave sampli

а

Results and discussion

In field evaluation

Effluent from secondary $BOD_5 = 12 \text{ mg/L}$, SS = 15 mg/L

Sampling conditions

✓ 5 days sampling period

✓ Autosampler collected 100 mL samples every 15 min. At the end of each day, sample filtration, integration and storage at 4°C.

✓ Analysis by SBSE-GC-MS.

Results and discussion

Land Qua 20

Results obtained for the In Field evaluation of the prototype in the effluent of the WWTP.

Compound	CFIS (ng /L) ^a	Autosampler (ng /L) ^a
Lindane	2.0 ±13	3.1±17
Phenanthrene	2.5 ±12	2.2±16
Fluorene	0.9 ±17	0.8±18
Fluoranthene	1.1 ±16	0.9±14
Chrysene	2.5 ±12	1.5±16
p,p ´-DDE	0.8 ±19	≤1
Benzo [a] pyrene	2.1 ±13	2.4 ±18
Benzo [g,h,i] perylene	0.9 ± 15	1.0 ±17

^a mean values \pm RSD (%) for n=4 (4 twisters with CFIS and 4 sample analysis with autosampler)

✓ Three analysis are involved in a measurement carried out by means of a sampler using PRC.

- 1.-PRC concentration spiked in the sampler
- 2.-PRC concentration after the exposure period.

3.-Analyte concentration.

$$U = \sqrt{20^2 + 20^2 + 20^2} = 36\%$$

 \checkmark Only one analysis with no PRC

CONCLUSIONS

1.-An innovative sampler for the TWA monitoring with Rs independent from in-field turbulences has been developed.

2.-Because no membrane is present, lag time values can be considered as negligible.

3.-PDMS in the twisterTM format has been used, nevertheless many other formats can be used. This makes it possible to choose the desired Rs (sensitivity) and/or t ½ values.

4.-The fact that no PRC is needed makes the TWA calculation very easy and accurate because a single chromatographic analysis is needed

5.-Different sorbents can be installed inside the cell increasing the range of applications to polar compounds or metals.

