

Mixing apples and oranges

Problems, approaches and solutions in mixture risk assessment

Leo Posthuma and many colleagues

Weigh. One heavier or healthier?

Nice mixture

PIE APPLE HIDCI

Act as if the same

(but wrong?)

Whatever

This basket is healthy

Thought experiment; "random compounds, "the" ecosystem

Net impact downstream??

(Assuming: no mixture, no recovery, no breakdown, no further dilution)

Net impact

- 1. I am sure I cannot know
- 2. I don't know
- 3. I am sure it is 50%
- 4. I think it is 50%
- 5. I am sure it is not 50%, but some bit higher
- 6. I guess it is more than 50%
- 7. I think it is more than 50%
- 8. I am nearly sure it is near 75%
- 9. I am not fully sure, but it is likely between 70 and 80%
- 10.I am sure it is 100%

Thought experiment 2 (1 day apart)

Net impact downstream??

(Assuming: no recovery, no breakdown, no further dilution)

Thought experiment 3, 4, 5

= mixture problem

NORMAN – objectives

To create a network of (expert) reference laboratoriesfor....

- Improve data collection and management
- Concerning emerging environmental contaminants
- From monitoring institutes
 ⇒ End-users (finally risk management)
- Improve and validate tools along this chain
- Eventually: spatially and temporally explicit risk information (man and eco)

Eventually: permanent HERA network on emerging environmental contaminants

And all those emerging environmental contaminants

may co-occur – how to address that?

(this workshop's theme)

This presentation

- How to address apples and oranges: mixture risks
- To eventually serve risk management
- Using established techniques and models
- While critical on validation
- Recognizing strengths and weaknesses
- practical examples to show risk management benefits

Basic mixture issues (physiology, mechanistic)

Mathematical properties of CA and RA

Drescher, K., and Bödeker, W. (1995).

Assessment of the combined effects of substances – the relationship between Concentration Addition and Independent Action [RA].

Biometrics. 51, 716–730

Mathematical properties of CA and RA

- At "moderate" slopes, divergence between mixture null models limited !!
- "No mixture effect" is "most wrong"

CA-prediction \cong RA-prediction \cong Mixed-Model prediction

Statement:
 "For some practical problems it is better → to use either mixture model (CA and/or RA and/or "mixed model"), rather than
 → neglect mixtures (using "limitations in scientific evidence" as argument)

..... provided that assumptions need be tested

From mechanism to ERA-use

Apparently, we have:

- Frequent mixtures in environment
- Mechanism-based, numerically validated species-level models
-and our 75%-guestimate (Rhine thought experiment) at the species assemblage level

Assemblage-level modeling

- Species differ in sensitivity for a compound
- SSD = Species Sensitivity Distribution
- Y = Potentially Affected Fraction (PAF)

Back to thought experiment:mixture

- Mixture risk according to dissimilar Mode of Action:
- Risk = PAF = Potentially Affected Fraction of species
- Multi-substance PAF = $1 (1 0.3)^*(1 0.5) = 0.65$ msPAF = 0.65
- 65% of the species would be affected in this river
- ranking of sites possible \rightarrow management information !

Risk assessment paradigm

The ERA paradigm

Currently two policy lines

E.g., EU-Water Framework Directive

Good Chemical Statuspriority compounds
 → Chemical Quality Criteria

If not met

→ Reduce emissions

Good Ecological Status Species assemblages OK
 → Diagnosis of mixture (?) problem

If not GES \rightarrow diagnosis \rightarrow Integrative site management

Double use ERA-paradigm

Prevention

Curation

CRITERIA SETTING

(Site) RISK ASSESSMENT

....that is: consistent, tiered system

Extrapolation Practice for Ecotoxicological Effect Characterization of Chemicals

And now: follow context not details

Examples highlighting tiering, flexibility,....

....imagine consequences for ERA-practices

Net risk for adjacent ditches and watersystems?

Compounds only: Evaluate net expected impact + rank

- Vitality loss (ditches)
- Model: Predicted ditch concentrations
- Summer: Max. 51% of species
- 7 compounds link to 96% of loss

Contribution by Crop Type:

- Potatoes 58%
- Bulbs 14%
- Other

Ranking informs priority
A Environment / € ?

ALT. JE

Contaminated sediment in rural areas

Policy plan: phase out class-2 pollution (green) in yr 2000
 → Currently: millions of m³ backlog

Compounds + Local System

Where can we safely deposit slightly contaminated sediment on land, regularly, and at acceptable cost?

• From "per chemical + safety factor" to a local systems approach

Example output (> 1000 sites, Boxplot risk variance)

Good / bad Ecological Status: diagnosis?

Diagnosis

Deviation of Good Ecological Status / Potential

Deviations observed..... What are the causes of impacts?

Eco-epidemiology From monitoring data → local causes → Program of Measures

LocationID k	lasse_ID	ActualRisk	PAF0	delta	PAF	
1	0	0.09065088	9 0.06934	3955 0.0213	306933	
4	0	0.09856964	7 0.03786	4762 0.0607	704885	
38	0	0.08164187	3 0.03786	4762 0.043	777111	
68	LocationID	klasse ID	ActualRisk	PAEO	delta	PAF
98	² 1	0.10074811	0.0906509889	1 0 06934	1955 - 0 0213	06933
127	Ū4	0.12458809	0.09856584	1015h 0378h	789 20 0607	04885
129	Ū ₂ g	0.12458959	D ORTHERP	DISh NAYAN	1789 25h 0437	77111
130	Ý68	0.124589 99	h 07447999	DISh HARPY	102 0.040	05300
131	- Vas	-ocation D	0 10574007	0.00217	571 0.00	deltaPAF
180	107	0.0894161	0 12445060	anan rakan	10 10 0043	18925
182	400	0 114689 4	h 124 seded	1000520220	10 0042	19025
195	120	C.089416 A:	0.124500 dos	1LA9154 H821	818 90 0042	19025 .043777111
304	- 150 - 151	0.14867番港	h 124566660	107 40 70 10 10 10	896 90 0042	19025 .024605396
333	the	0.1153 2 2	0.0000000000000000000000000000000000000		1219 DOR177	0.0075724
344	100	C.1123757	0.009410412	1700 HARDARD	2404 40 Hond	004318925
348	102	C.112375	0.114003000	17121 18080	2229 3024 6 118	.004318925
354	195	C.110425A	0.009410412	1000 3010	HOL ADRONA	004318925
366	304	0.1003014	0.1486/859		Provide and a stand of the	004318925
370	333	C.1000808	0.1153120	LABOR 1828	101 - HA724d	021997948
372	344	C.086250 2	0.1123/16/3	1-1-1-1-0-00000	(91.228718	125029338
375	348	0.08318 4	0.1123/16/3	LASTAR		021997948
399	354	0.0875955	0.11042391	LLAND THE	DED SURVISI	017366278
455	300	0 10730207	0.10030044	0.11 Satad	0993 .34 BAR	fRf 004155091
460	370	0730130	0.10008085	31.1.1.9-77416-6	615 410/07	007096086
471	3/2	073013	0.086250129	1.119-79-98-66	(28 - 14 - 62 87	42798 .007096086
476	375	0730134	0.08310748	1.	104 449889	AR24 .032268672
481	399	0730136	0.08759380	0_19/13/09/14	945 14 977A	Han 34 .011876254
487	455	0784538	0.10736496	2 LTOURING	325 . 10 ANY 91	0.00594076
492	460	0730132	0.07301282	LUSKARD	255 4 46 49	985 (.018821598
496	471	0784555	0.07301282	a and the state	255 .0d04d9	016485622
500	476	C 0704080	0.07301382	LOS HAPPRES	255 1 14 WAR	245 (.027827138
504	481	C 07045	0.07301282	1.10948864	3255 00.036	89957(.004167635
508	487	C 0704-00	0.07845513	102904983	603 0 6336	0.03689057
512	492	C 07845915	0.07301282	LOZO APRIL	3255	88857 0.03689057
517	496	0704786	0.07845513	Lazantas	603 AR8336	18533 0.03689057
521	500	0.109651	0.07845513	LOZINI MO	5603 7764346	0.03689057
526	504	C 0520247	0.07845513	1079-06-583	5603 D R326	18533 .032618533
548	508	11140002	0.07845513	in Anthony	5603 P.R336	0.03689057
010	512	Re	0.078455137	0.079.05593	5603 20.6336	18533 .032618533
	517	80	0.078455137	0.078-04583	903 AR336	032618533
	521	4	0.10987032	1079.036127	5255 ALR737	032618533
	526	48	0.052925764	1.079.04363	1416 10.0002	4348 .032618533
	548	£12	0.114905951	0.078465P37	1615 <u>A</u> R088	84336 .032618533
		517	0	0.078455137	0.045836	603 0.032618533
		521	0	0.10987032	0.036123	255 0.073747065
		526	0	0.052925764	0.043631	416 0.009294348
		548	0	0.114905951	0.106021	615 0.008884336

Monitoring data

- 700 sites
- 100 species of fish
- 25 stressor variables +
- msPAF for all toxicants

Outline of diagnostic product

- -Impact per site
- -Causes per site
- -(Ohio, Scheldt)

Not only for chemicals for which we have

Water, Soil or Sediment Quality Criteria

Chemicals + site + natural variability

• Good Ecological Status is final target (EU-2015)but species composition varies between sites

Figure 3.1 Example of a TWINSPAN presentation of RIVPACS-grouping of reference site

Chemicals + site + stressors + natural variability

Ohio – local diagnostics

Disaggragation of mixture impacts (River Scheldt, 4 subcatchments)

Further research to reduce uncertainties

"IT MAY VERY WELL BRING ABOUT IMMORTALITY, BUT IT WILL TAKE FOREVER TO TEST IT."

Manage risks

despite uncertainties

National Institute for Public Health and the Environment

Validation, remember?

Validation as constant focus in science

Monitoring (species loss) data and msPAF approach

msPAF_{EC50} associated to species loss But "natural variability" and other stressors

Validity: Monitored species loss vs msPAF

National Institute for Public Health and the Environment

OK for ranking and management priority

msPAF and species abundance change

Regression term	Category	Percent of species with term	Significance of regression terms			
			p < 0.001 p = 0.0	1 p = 0	p = 0.05	
LongpDEV	Natural	73%	100%	0%	0%	
DCatpDEV	Natural	72%	98%	0%	2%	
AATRpDEV	Natural	72%	96%	2%	2%	
	Nutrient	/1%	96%	4%	0%	
Industrial msPAF	Toxic pressure	(71%)	96%	4%	0%	
ອແກກຣາ	Natural	69%	98%	0%	2%	
DisSpDEV	Natural	67%	100%	0%	0%	
SlopepDEV	Natural	67%	98%	2%	0%	
pHpDEV	Water chemistry	67%	96%	4%	0%	
LatpDEV	Natural	65%	100%	0%	0%	
AltpDEV	Natural	64%	100%	0%	0%	
CaCO3pDEV	Natural	64%	98%	0%	2%	
TSSpDEV	Water chemistry	64%	100%	0%	0%	
DepthpDEV	Natural	63%	100%	0%	0%	
BolCobpDEV	Natural	63%	100%	0%	0%	
NH4pDEV	Nutrient	63%	98%	2%	0%	
PebGravpDEV	Natural	61%	98%	2%	0%	
PhipDEV	Natural	61%	98%	0%	2%	
MATpDEV	Natural	61%	98%	2%	0%	
ClpDEV	Water chemistry	61%	98%	2%	0%	
WidthpDEV	Natural	60%	98%	2%	0%	
	Nutrient	57%	100%	0%	0%	
Pesticides msPAF	Toxic pressure	56%	100%	0%	0%	
Sanapue v	Natural	55%	95%	5%	0%	

msPAF highly significant "shaper of abundance"

Further methods

- So far: model explorations; useful for "big workloads" & ranking
- Empirical 2nd and higher tiers
 - TIE (Sequential exclusion of stressor relevances)
 - BDF

.

.

- Weight of Evidence (Simultaneous Triad of approaches)

Triad – multiple lines of evidence (to verify local impacts)

		Parameter	San	nples		
	Chemistry		Ska	agen L	Skagen M	Skagen H
		Sum TP organic chemicals		0.00	1.00	1.00
		Sequential Supercritical Fluid Extraction (SSFE)				0.24
		Leaching test in hand -packed colums				0.03
(obomietry)		Solid Phase Micro Extraction (SPME)				
		Concentration in plant shoots (mg/kg)		0.00	1 00	0.68
	<u> </u>	к	SC	0.00	1.00	0.88
	Toxicology					
		Plant growth test	_	0.00	0.40	0.48
		Springtail reproduction test		0.00	0.18	0.37
		MICrotox acute (BSPT)		0.00	0.00	0.07
		Ostracouloxkil mortality		0.00	0.07	0.32
IISK		Danhnia survival 24 hours		0.00	0.01	0.04
		Daphnia survival 48 hours		0.00	0.10	0.15
		Danhnia survival		0.00	0.10	0.20
toxicity adalagy		Dahnia offspring		0.00	0.15	0.30
ecology/		R	sc	0.00	0.24	0.34
	Ecology					
	57	Microarthropodes		0.00	0.26	0.33
		Vegetation		0.00	0.17	0.34
		Biolog		0.00	0.19	0.18
		R	sc	0.00	0.21	0.29
		judgement chemistry:		0.00	1.00	0.88
		judgement toxicology:		0.00	0.24	0.34
		juagement ecology:		0.00	0.21	0.29
		final judgement		0.00	0.02	0.62
		deviation		0.00	0.92	0.56

Conclusions

- We can mix apples and oranges in "fruit units" (kg, or vitamines, or....)
- We (I hope) showed a good gut feeling on mixtures (Rhine thought experiment)
- We have robust numerical models, derived from pharmacology and fundamental mixture toxicology
- Those can be "extrapolated" to compounds of concern, to predict probable impacts of mixtures
- At least useful for ranking impacts between sites
- Also in complex diagnostic (bio)monitoring dataset
- Various lines of evidence support sufficient validity
- When uncertain, apply local empirical approaches, mechanism-based approaches (many...)

