

Transformation products of organic contaminants – Relevant risk factors?

Eawag: Das Wasserforschungs-Institut des ETH-Bereichs

Infotag 2009

Occurrence of transformation products

 Some herbicide transformation products detected in higher concentrations and more frequently than the parent pesticides in groundwater and surface water

How toxic are transformation products?

• 30% of transformation products more toxic than parent pesticide to fish, daphnids and algae

Sinclair and Boxall (2003) Environ Sci Technol 37: 4617-4625

How are transformation products regulated?

• Pesticide Directive (91/414/EEC):

- Identification of relevant transformation products mandatory
- Clear guidance on assessing their relevance
- Industrial chemicals (REACh):

- Identification of transformation products requested for products > 100 t/y
- No guidance on assessment
- Human and veterinary medicines (EMEA):

 Consideration of environmental transformation products subject to expert judgment

Open questions, challenges and opportunities

- Research goals
 - Assess exposure to transformation products
 - Identify relevant transformation products
- Challenges
 - Which products?
 - Lack of analytical standards
 - Scarcity of experimental fate data
- Opportunities
 - Read-across from parent compound properties

⇒ Develop toolbox to adequately and efficiently assess transformation products

Strategy for assessing transformation products

Identification

Effect assessment

Transformation products

• Artificial intelligence tools

Set of transformation rules

- University of Minnesota Pathway Prediction System (UM-PPS)
 - About 200 transformation rules
 - Derived from database of experimentally elucidated biotransformation pathways (UM-BBD)
 - Publicly available, transparent, continuously developed
 - http://umbbd.msi.umn.edu/predict/index.html

University of Minnesota Pathway Prediction System (UM-PPS) Rule bt0353

The challenge: Combinatorial explosion

Method to limit combinatorial explosion needed!

Finding rule priorities through data mining

- Use knowledge from experimentally elucidated pathways to learn
 about rule priorities
- Define rule priorities: If two rules are applicable, only apply the one more likely according to known pathways
- Find pairs of rules with clear rule priority over all known transformations

$$R'_{A} = \{(r_{i} > r_{j}) \mid |O_{i} \cap T_{j}| \ge 10 \land |T_{i} \cap O_{j}| = 0\} \xrightarrow{\text{bt0063} > \text{bt0022} > \text{bt0036}}$$

$$R_{B} = \{(r_{i} > r_{j})|(r'_{i} > r'_{j}) \in R_{A} \land r_{i} \in \text{group}(r'_{i}) \land r_{j} \in \text{group}(r'_{j}) \land r_{j} \in \text{group}(r'_{j}) \land |T_{i} \cap T_{j}| \ge 1 \land (\neg \exists c : c \notin O_{i} \land c \in O_{j}) \land ((|O_{i} \cap T_{j}|) \ge 5 \land |T_{i} \cap O_{j}| = 0) \lor r_{i} = r'_{i} \lor r_{j} = r'_{j})\}$$
"Known" products "Unknown" products

Structure-biodegradation relationships UM-PPS: Results from implementation of rule priorities

Fenner et al., Bioinformatics, 2008

UM-PPS: Results from implementation of rule priorities

• 15% reduction

UM-PPS: Results from implementation of rule priorities

- 15% reduction
- Sensitivity stable
- Selectivity improved

	n	Predicted Known products		Sensitivity	
		reactions	predicted	not predicted	(%)
Original					
Pesticides	24	280	43	15	74.1
With relative reasoning					
Pesticides	24	240	43	15	74.1

Experimental elucidation of rule priorities

Experimental setup

Bioreactor considerations:

- Control pH, temperature, dissolved oxygen
- Sludge (active biomass) concentration
- ✓ Spiked compound concentration
- ✓ Sorption and abiotic controls

Sample preparation considerations:

- ✓ Sample volume SPE
- Compound sorption to syringe
- Compound sorption to filter material
- ✓ Sample storage

Analytical method:

- Previously developed screening method
- ✓ UM-PPS predicted TP masses
- ✓ Identification with exact mass and MS/MS
- ✓ No need for reference standards

Experimental elucidation of rule priorities

Selection of pertinent rule priorities

Experimental elucidation of rule priorities Case study: Amides

- No transformations with priorities over amide fragments within UM-PPS
- Specific biodegradation pathway of amides remains ambiguous
- Starting hypothesis: 1° and 2° amides hydrolyze rapidly, 3° amides dealkylate

Experimental elucidation of rule priorities

Experimental elucidation of rule priorities

Structure-biodegradation relationships Outlook and further work

• New case study for amines and ethers

Feedback loop into UM-PPS

- UM-PPS mirror at ETH Zürich
 - More "environmental realism"
 - Validation and further development based on data from soil and activated sludge simulation studies

Strategy for assessing transformation products

Finding products with relevant aquatic exposure Tools

Mass balance model to predict concentration ratios of parent pesticide and transformation products Field study La Petite Glâne; Chemical analysis for 12 events and 6 pairs of parent compounds and transformation products

Measure for exposure to transformation product: Relative concentration in last box of river model

Gasser et al., ES&T, 2007; Kern et al., in prep., 2009

Finding products with relevant aquatic exposure Summary of field study results

Finding products with relevant aquatic exposure

Comparison model – measurements

Strategy for assessing transformation products

Effect and risk assessment

Predicting toxicity range of transformation products using readacross

Membrane-water partition coefficient (log D_{mw} , pH 7)

Effect and risk assessment

Case study diuron

Effect and risk assessment

Modeling effects, concentrations and risk contributions

Conclusions

• Prediction of biodegradation products

 Restriction of prediction space through data mining and targeted experiments

• Characterization of exposure to transformation products

- Combination of modeling and monitoring
- Importance of groundwater component!

• Procedure for risk assessment of transformation products

- Prediction of relative concentrations
- Prediction of toxicity range through readacross
- Targeted toxicity studies

Thank you!

KoMet team:

- Susanne Kern
- Judith Neuwöhner
- Beate Escher, Juliane Hollender, Heinz Singer
- Swiss Federal Office for the Environment (Bafu):
- Michael Schärer
- Paul Liechti, Christof Studer, Reto Muralt, Christian Pillonel, Daniel Traber

