

Fate and effects of chemicals including their transformation products

Rosalie van Zelm

Mark Huijbregts, Dik van de Meent

November 19th 2009

With help from Kathrin Fenner, Arjen Wintersen, Anita Pomplun

Radboud University Nijmegen

Contents

- Introduction
 - ✓ Life cycle impact assessment
 - ✓ Goal
- Methods
- Results
 - ✓ Changes upon inclusion transformation products
- Case study
 - \checkmark Atrazine application on corn
- Conclusions

NORMAN workshop
Life Cycle Impact Assessment

Life Cycle Impact Assessment modeling

Provide input to <u>quantify</u> impacts of stressors

✓ Putting a score to the effects of a chemical on the environment or humans caused by its emission

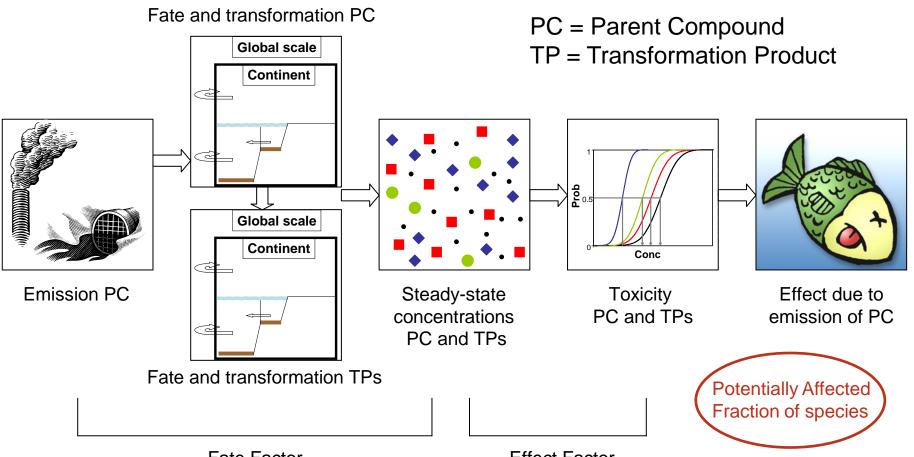
✓ Including fate and effects

Characterization factors

NORMAN workshop This research

Goal

Provide characterization factors for 16 chemicals including their transformation products

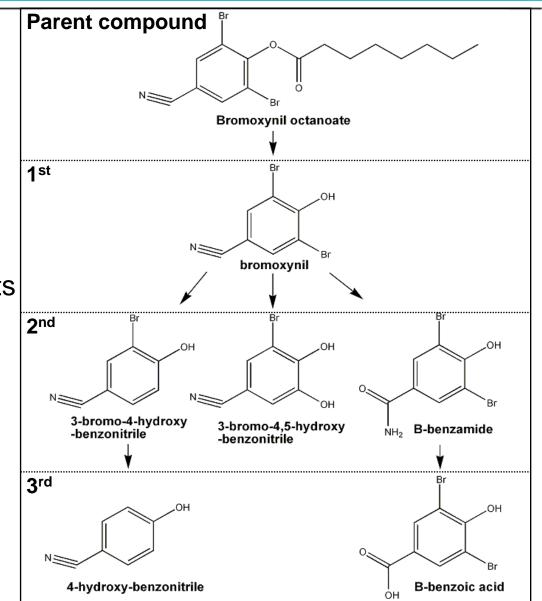

- Persistence, mobility and toxicity
- Including uncertainty analysis
- Case study atrazine application on corn

NORMAN workshop Methods

Ecotoxic effects

NORMAN workshop Methods

Ecotoxic effects


Characterization Factor of chemical x: $CF_{x,p} = FF_{x,p} \cdot EF_{x,p}$ Including *n* transformation products *t*. $CF_{x} = FF_{x,p} \cdot EF_{x,p} + \sum_{n}^{n} \left(F_{t_{a}} \cdot EF_{t_{a}} \right)$ CI CI CI perchloroethylene CI CI CI-CI CI CI OH trichloroethylene trichloroacetic phosgene trichloroacetic acid chloride acid

NORMAN workshop Methods

Fate

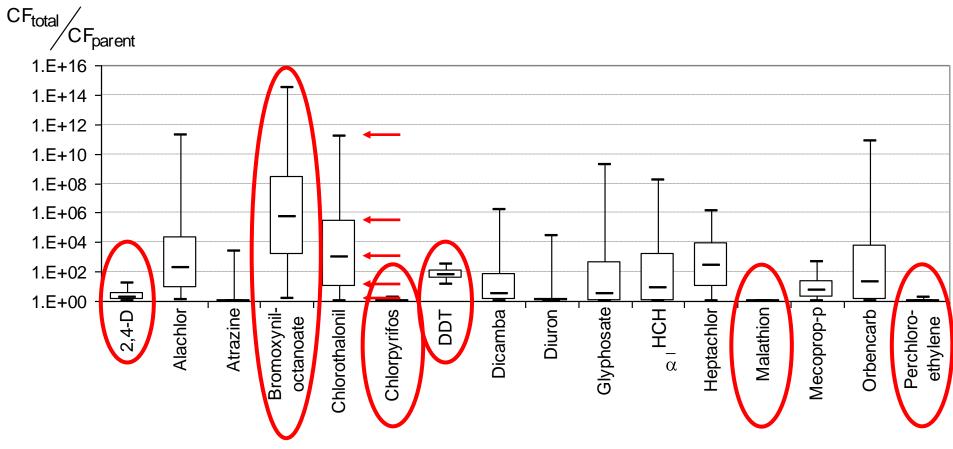
- Multimedia fate model SimpleBox3.0
- Up to 4 generations of transformation products
- Degradation rates
- Formation yields

Effect

• Per parent compound/ transformation product

•
$$\frac{dE}{dC} = S \cdot \frac{1}{HC50}$$

- Acute freshwater toxicity of a chemical
- Experimental (e.g. e-toxBase) or estimated with ECOSAR
- Toxic mode of action e.g. e-toxBase or ASTER


Characterization factors

- Emission compartments air, freshwater, agricultural soil
- Concentrations in freshwater ecosystem
- A number of chemicals:
 - ✓ Perchloroethylene
 - \checkmark 15 pesticides, i.e. atrazine, DDT, and heptachlor
- Uncertainty assessment
 - ✓ Chemical-specific input parameters
 - ✓ Monte Carlo: 10,000 iterations

NORMAN workshop Results

Increase in characterization factors

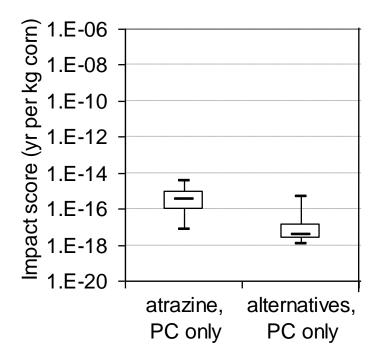
Including transformation products

- Median increase of up to 5 orders of magnitude
- Fate and toxicity of importance
- Reliable data, uncertainty range does not need to increase
- Uncertainty in effect factor largest
 ✓ unknown EC50 data
 ✓ no TMoA oppositio data
 - ✓ no TMoA-specific data

NORMAN workshop Case study

Case study – atrazine on corn

- Possible atrazine ban
- Replacing pesticides
 2,4-D, bromoxynil, dicamba, nicosulfuron
- Total Impact Score (IS) [PAF*yr per kg corn] \checkmark IS_{ecotox} = \sum_{x} (R) \cdot ($M_{x,a}$ ($F_{x,a}$)+($M_{x,s}$ ($F_{x,s}$)


 AR_x = Application rate (kg/kg_{corn}) of pesticide x

- M_{2} = Emission to air
- M_{s} = Emission to agricultural soil
- CF_a = Characterization factor for emissions to air
- CF_s = Characterization factor for emissions to agricultural soil

NORMAN workshop Case study - Results

Case study – atrazine on corn

- Not certain IS will increase
- Alternative pesticides might not be an improvement
- 2,4-D best alternative

Conclusions

- Transformation products should not always be disregarded
 - ✓ Bromoxynil-oct, chlorothalonil, DDT, heptachlor >50% chance that CF will increase more than factor of 10
 - ✓ Alachlor, bromoxynil-oct, chlorothalonil, heptachlor, orbencarb
 >25% chance CF will increase more than factor of 100
- Data input can be highly uncertain
 - Reliable data, CFs can be substantially larger, while uncertainty does not need to increase
- A ban on atrazine will not necessarily lead to a decrease in pesticide impacts