

IDENTIFICATION AND QUANTIFICATION OF TRANSFORMATION PRODUCTS IN THE AQUATIC ENVIRONMENT BY HIGH RESOLUTION MASS SPECTROMETRY

Juliane Hollender, Rebekka Baumgartner, Kathrin Fenner, Susanne Kern, Philipp Longrée, Heinz Singer

Eawag: Swiss Federal Institute of Aquatic Science and Technology

Transformation Products (TPs)/Metabolites in European Directives and Guidelines

Drinking Water Directive:

...pesticides and their relevant metabolites in drinking water must not exceed 0.1 μ g/L.

Council Directive 91/414/EEC concerning the placing of plant protection products on the market

...64 times "relevant metabolites"

EMEA-Guideline on the environmental risk assessment of medical products for human use (June 2006) ... relevant metabolites

Analytical strategy to identify and quantify transformation products (TPs)

Challenge

Kolpin et al. Groundwater 2004 Boxall et al. ES&T, 2004,

Suspects screening without reference standards

Non-target screening

without reference standards

Analytical procedure

Hybrid mass spectrometer - Orbitrap XL

Electrospray Interface

- Mass range:
- Resolution:
- Fragmentation:

50-2000 m/z Unit resolution CID

• Accuracy:

100,000 (@ 400m/z) < 5 ppm

Collision Cell • Fragmentation:

higher energy collision dissociation (HCD)

MS settings for screening

Suitability of screening procedure

167 parent compounds, 81 transformation products (TP): Mr: 115 – 1000; Kow: -2.2 up to 5.7, 52 % neutral, 48 % ionic

Target screening: Case study groundwater

Quelle Geobasisdaten: Eurostat-GISCO (1992) via UNEP-GRID-Genf

Target screening: Case study groundwater

Number of findings

Suspects screening

Identification procedure without reference standards

1. Exact mass:

- \rightarrow extracted chromatogram
- 2. Retention time:
- → comparison to parent compound or prediction based on log Kow
- 3. Molecular structure:
- \rightarrow interpretation of MS/MS fragments

Suspects screening: 1. Exact mass & isotope pattern

Compound detection: filtering with 5 ppm extraction window

Suspects screening: 1. Exact mass & isotope pattern

Isotope pattern: C₅H₆CIN₃O

→ ~100 possible structures in Pubchem/Scifinder data bases

Suspects screening: 2. Retention time

Suspects screening:

3. Molecular structure - Interpretation of MS/MS fragments

Chloridazonmethyl-desphenyl

*predicted by fragmentation software (Mass frontiers)

Chloridazon TPs in Swiss groundwater samples

Roberts & Hutson et al., Metabolic Pathways of Agrochemicals, 2002 Weber et al. Vom Wasser 2007

Suspects screening: Case study surface waters

7 water samples (agricultural areas, downstream wastewater treatment plants)

identified by reference compounds

*http://umbbd.msi.umn.edu/servlets/predict.jsp

Kern et al., ES&T 2009

Examples for identified transformation products

Pesticide transformations products:

Chloridazon-methyl -desphenyl

Metamitrondesamino

Pharmaceutical transformation products:

N-Desmethylvenlafaxin

O-Desmethylvenlafaxin

D617 (Verapamil-TP)

Suspects screening

Strategy for identification of relevant pharmaceutical TPs

TP formed in batch experiments with sewage sludge from operating sewage treatment plant (STP) Influent / effluent concentrations in corresponding STP

Strategy for identification of relevant pharmaceutical TPs

Illustrative results from batch experiments

Duplicate batches for atenolol (β -blocker):

• : atenolol, •: atenolol acid (TP), * : control

Strategy for identification of relevant pharmaceutical TPs

TPs in batch experiments and STP influent/effluent

TPs with reference standards

parent compound	transformation product	structure	influent	effluent
Atenolol			\checkmark	√
	Atenolol acid	H ₃ C NH OH	\checkmark	√
Venlafaxine		H ₃ C _O CH ₃ OH	\checkmark	√
	N-desvenlafaxine	H ₃ C O OH NH _{CH3}	-	\checkmark
	O-desvenlafaxine	СН3	\checkmark	

Conclusions

Chemical analysis

- Combination of target and suspects screening enables evaluating the exposure to transformation products in the aquatic environment
- SPE-HPLC-ESI-MS method is necessary to enrich, separate, ionize and detect mostly polar transformation products
- High resolution mass spectrometry is indispensable to identify polar transformation products without reference standards
- Combination of laboratory batch experiments and screening of STP samples is suitable to identify new transformation products

Exposure to transformation products

- confirmed that especially pesticide transformation products are important in groundwater
- For half of the parent compounds 1-2 transformation products were detected in surface and groundwater

Thanks to

Eawag's Environmental Chemistry team: Sebastian Huntscha Martin Krauss Damian Helbling

Swiss Federal Offices for the Environment for funding of the project Komet and of the Groundwater Surgey

Environmental transformation of organic compounds:

Towards a joint perspective on the importance of transformation products as environmental contaminants

12-17 September, 2010 Monte Verità, Ascona, Switzerland

Organizers: Kathrin Fenner, John Sumpter, Juliane Hollender

