

Stability of silver nanoparticles in aqueous suspensions

Markus Delay, Reinhard Sembritzki, Tamara Dolt, and Fritz H. Frimmel

Engler-Bunte-Institut, Chair of Water Chemistry

Motivation

Nanoparticles

- sized between 1 and 100 nm
- physical properties are different from both the ion/dissolved and the bulk material form (melting point, optical and catalytic activity)
- Increasing application of manufactured or Engineered Nanoparticles (ENP)
 - in industry (catalysis, food production, surface treatment),
 - in medicine (pharmaceuticals),
 - and in daily life (personal care products)
- Consequence: ENP will find their way into environmental systems.
- Environmental behavior of ENP
 - interactions with water constituents, e.g. calcium and natural organic matter (NOM)
 - alteration of pristine ENP (e.g. coating with NOM, aggregation)
 - effects on stability, mobility, interactions with trace pollutants, toxicity

Aims

- Focus: behavior of silver nanoparticles (n-Ag) in aqueous solutions
- Synthesis of n-Ag by chemical reduction of AgNO₃ in the liquid phase
- Stability of n-Ag suspensions
- Interactions between n-Ag and calcium, sodium and NOM
- Analytical methods to characterize the stability and the interactions of n-Ag with water constituents:
 - UV/vis spectroscopy: detection of n-Ag
 - **Dynamic Light Scattering (DLS):** hydrodynamic radius
 - Laser Doppler Electrophoresis (LDE): zeta potential
 - Asymmetric Flow Field-Flow Fractionation (AF⁴) coupled with UV detection and inductively coupled plasma mass spectrometry (ICP/MS): particle size, chemical composition
 - benefits and limitations of the methods, challenges for further developments

Why n-Ag?

Widely used

- as catalyst (oxidation of ethylene to ethylene oxide),
- as nanoelectronic device, or
- in treatment of textiles (antimicrobial properties) [Benn und Westerhoff 2008, ES&T, 42, 4133-4139].

Environmental impact (Switzerland):

Approx. **5 t/a** of n-Ag are released into the environment due to textiles (10 %), cosmetics (25 %), paint (35 %) and other (30 %) products [Müller and Nowack 2008, ES&T, 42, 4447-4453]

Preparation of n-Ag

- chemical reduction of AgNO₃ with NaBH₄ (in liquid phase): $2 \text{ AgNO}_3 + 2 \text{ NaBH}_4 + 6 \text{ H}_2\text{O} \rightarrow 2 \text{ Ag} + 2 \text{ B}(\text{OH})_3 + 2 \text{ NaNO}_3 + 7 \text{ H}_2$
- theoretical molar ratio $R_{\text{theor}} = c(\text{reducing agent})/c(\text{AgNO}_3)$ (here: 1:1)
- Teflon bottles were used for preparation (stability problems in glass bottles)
- after systematic variation of reaction conditions (stirring time, R_{exp}):
 - $c_0(\text{AgNO}_3) = 0.2 \text{ mmol/L}, c_0(\text{NaBH}_4) = 1 \text{ mmol/L} (R_{\text{exp}} = 5)$
 - stirring time of the solution $t_{stirr} = 24$ h
 - liquid phases:
 - MilliQ water (MQ)
 - Brown Water (Lake Hohloh, Black Forest/Germany; HO26), ρ(DOC) = 21 mg/L
 - Mixtures of MQ and HO26

NaBH₄ -

Basic characterization of the resulting suspensions

- n-Ag in MilliQ water (MQ):
 - stable suspensions, $pH \approx 8,3$
 - **DLS:** hydrodynamic radius $r_{\rm H} \approx 2.4$ nm
 - LDE: zeta-potential ≈ 40 mV (layer of BH₄⁻ which surrounds the n-Ag [Song et al., 2009, Kor J Chem Eng, 26, 153-155]

Addition of Brown Water (HO26):

- similar pH value and negative zeta-potential
- increasing hydrodynamic radius with increasing DOC concentration:
 - HO26:MQ = 1:1 (ρ (DOC) = 11 mg/L): $r_{\rm H} \approx 3.8$ nm
 - HO26 (ρ (DOC) = 21 mg/L): $r_{\rm H} \approx 6.5$ nm
- explanation: coating of n-Ag particles with NOM molecules

Stability of n-Ag suspensions

- Addition of NaNO₃ or Ca(NO₃)₂ (1 50 mmol/L)
- Suspension stability was investigated using UV/vis spectroscopy at 400 nm (light absorption of n-Ag due to the formation of a plasmon absorption band in the visible region [yellow])

n-Ag in a teflon bottle

Addition of NaNO₃

Addition of Na⁺:

8

- destabilization of n-Ag in MQ (compression of electrical double layer, aggregation)
- suspensions with HO26 remain stable
- NOM improves stability of n-Ag (surface coating, steric and charge stabilization) [Cumberland and Lead 2009, J Chrom A, 1216, 9099–9105]

 λ in nm

Addition of Ca(NO₃)₂

Addition of Ca²⁺:

- destabilization of n-Ag in MQ, complete aggregation (higher ionic strength with Ca²⁺ than with Na⁺)
- addition of HO26 enhances stability
- n-Ag + HO26: interaction of Ca²⁺, NOM and n-Ag, formation of large aggregates (flocculation)

Asymmetrical Flow Field Flow Fractionation (AF⁴): Principle

Coupling of a separation unit (here: AF⁴) with highly sensitive detectors

Coupling of AF⁴ with different detection systems

• **AF⁴ systems (separation):**

POSTNOVA HRFFF10.000

(eluent: NaNO₃ (5 mmol/L); membrane: polyethersulfone, 300 Da MWCO; spacer: 350 μ m; injection volume: 100 μ L; detector flow: 0,3 mL/min)

WYATT Eclipse 3+ system

(eluent: NaNO₃ (5 mmol/L); membrane: regenerated cellulose, 10 kDa MWCO; spacer: 350 μ m; injection volume: 300 μ L; detector flow: 0,5 mL/min) (measurements in cooperation with WYATT TECHNOLOGY EUROPE)

Detection systems (selection):

- UV/vis detectors (λ = 400 nm)
- on-line DLS
- ICP-MS

Fractogramms (HRFFF 10.000 coupled with ICP-MS and UV/vis)

Karlsruhe Institute of Technology

- Samples:
 - (1) n-Ag in HO26
 - (2) n-Ag in HO26:MQ = 1:1
 - (3) n-Ag + Na⁺ (50 mmol/L)
 - (4) n-Ag + Ca²⁺ (50 mmol/L)
- Calibration with polystyrene standards (r = 10 nm, 30 nm, 50 nm, 110 nm, 300 nm)
- Eluting NP: n-Ag (ICP-MS)
- UV absorption at $\lambda = 400$ nm: alternative detection of n-Ag
- n-Ag in the samples (1) (3):
 r_H < 10 nm, good agreement with batch
 DLS measurements
- Sample (4): Formation of aggregates including Ag
- n-Ag in MQ: strong interaction with membrane material, separation not possible

Following the aggregation of n-Ag using AF⁴/ICP-MS

n-Ag in HO26

Interactions of n-Ag with membrane material

membrane: polyethersulfone (MWCO: 300 Da)
bare n-Ag in MQ

Fractogramms (Eclipse 3+ coupled with UV/vis and *online* DLS)

Samples:

- (1) n-Ag in HO26
- (2) n-Ag in HO26:MQ = 1:1
- (3) n-Ag in MQ
- bare n-Ag in MQ: interactions with membrane material (poor recovery)
- on-line DLS: good agreement with batch DLS measurements

n-Ag in the liquid phase

NOM stabilizes n-Ag suspensions

- transport behavior, mobility
- bioavailability
- removal of n-Ag from the liquid phase (water treatment)
- analytical methods

Future investigations on n-Ag/NOM

- use of further n-Ag (different particle sizes, different surface functionalization)
- further studies on the role of metal ions (aggregation, sorption)
- application of AFM to study the interactions of n-Ag with functionalized surfaces (reversibility?): Collaboration with Prof. Th. Schimmel, KIT

Analytical coupling techniques (here: AF⁴)

Benefits

- separation of ENP from matrix
- highly sensitive detection of ENP directly in liquid samples, e.g. in environmental samples
- simultaneous information on particle size distribution and chemical composition (ICP-MS)

Limitations

- interactions of NP and membrane materials
- €!

Challenges

- optimization of methods and materials to avoid membrane–NP interactions
- detection of NP in environmental samples (low concentration)

Acknowledgements

- Victoria Scarabotti and Annette Woellhaff
- Matthias Weber
- Dr. Dierk Roessner and Dr. Christoph Johann (WYATT TECHNOLOGY EUROPE)
- Dr. Thorsten Klein and Roland Welz (postnova analytics)
- KIT Competence Area "Earth and Environment"

Metal oxides and metals

TiO ₂	Pigment, photo catalyst
Iron oxides	Pigment, pharmaceuticals, medical applications
ZnO / ZrO ₂	Surface hardener
SiO ₂	Additive for polymers
Ag / Au	Catalysts, electronic devices

Quantum dots

CdTe / GaAs Semiconductors, electronic devices

Carbon based nanomaterials (CBN)

Black carbon	Additive in wheels, pigment
Fullerenes	Additive in grease
Nano tubes	Additive in polymers, accumulators and liquid fuel-cells

Stability (> 7 days) as function of stirring time

Ionic strength

	R	5	10	50
y input	Stirring time (h)			
lerg	0	Yes	No	No
ы Ш	4	Yes	Yes	No
+	8	Yes	Yes	No
	24	Yes	Yes	Yes