Sara Castiglioni Mario Negri Institute

Department of Environmental Health Sciences Laboratory of Nutrition's Toxicology

Occurrence and Fate of the Main Classes of Emerging Pollutants in the Aquatic Ecosysten of a Highly Urbanized Area

MARIO NEGRI

ISTITUTO DI RICERCHE

FARMACOLOGICHE

NORMAN Worshop – Amsterdam 29 November 2012

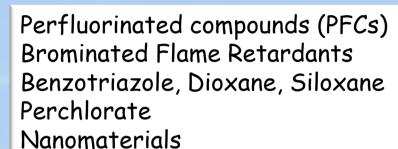
Emerging pollutants

(Richardson and Ternes, Anal. Chem. 2011, 83, 4614)

Anthropic Source

Industrial Source

Personal Care Products


Musks Sunscreens/UV filters Disinfectants

Therapeutic drugs

Pharmaceuticals Hormones Transformation products

Illicit drugs

Food or Water Production Artificial sweeteners (Sucralose)

Antimony from plastics or petroleum refineries

Water disinfection by-products

Agricolture Pesticides transformation products Algal toxins

Which kind of contaminants?

- ✓ Used in high quantities
- ✓ Heterogeneous group
- ✓ Continuos discharge
- Polar compounds (generally small)
- ✓ Biologically active substances
- Complex mixtures potential toxic effects

Aim of the project

Evaluate pollution of urban aquatic environment in a highly urbanized area in Italy

- > Selection of environmental pollutants
- Set up of analytical methods
- > Monitoring occurrence and fate in:
 - ✓ wastewater (raw and treated)
 - ✓ surface water
 - ✓ groundwater

> Mass balance of pollutants through the Milan area

Selection of contaminants

Pharmaceuticals

Antibiotics Anti-inflammatory Anti-cancer drugs Anti-hypertensive Bronchodilators Cardiovascular CNS drugs Diuretics Estrogens-Hormones Gastrointestinal Lipid regulator

Personal care products

Sunscreen Chemicals: Benzophenone-3 (BP-3); Benzophenone-4 (BP-4); 2-phenylbenzimidazole-5sulfonic acid-(PBSA); 4-Methylbenzylidene camphor (4-MBC) Disinfectants: triclosan, triclocarban

Perfluorinated compounds PFOS PFOA

Illicit drugs and metabolites

Amphetamines Cannabis Cocaine Opioids (heroin) Other synthetic drugs

Alkylphenols

Bisphenol A, octylphenol, 4-ter-octylphenol, nonylphenol

Markers of anthropic pollution Caffeine and metabolites Nicotine and cotinine

Analytical methods

Therapeutic drugs: 36 compounds + 6 deuterated standards (Castiglioni et al., *J Chrom A.* 2005; Castiglioni et al., *ES&T* 2006)

Illicit drugs: 29 compounds + 20 deuterated standards

(Castiglioni *et al., Anal. Chem.* 2006; Castiglioni et al., *Mass Spectrom Rev.* 2008; Zuccato et al., *Water Res.* 2008, Castiglioni et al., Water Res. 2011)

Personal care products: 4 compounds + 1 deuterated standard (Rodil et al., Anal. Chem. 2008)

Household biocides: 2 compounds + 1 deuterated standard (González-Mariño et al., Rapid Comm. Mass Spectrom. 2009)

Perfluorinated compounds: 2 compounds + 2 deuterated standards (Loos et al., *Chemosphere*, 2008)

> Alkylphenols: 4 compounds + 1 deuterated standard (Maggioni et al., Environ Sci Pollut Res Int, 2012)

Antrophic markers: 5 compounds + 3 deuterated standard (Huerta-Fontela et al., Anal. Chem. 2007; Bueno et al., Water Res, 2011)

Analytical methods

Sampling mode

- Wastewater: 24h composite samples (1 week sampling)
- Surface water: 2h composite samples
- Groundwater: grab samples

Sample preparation

- Filtration (1.6 and 0.45 µm)
- Solid Phase Extraction (SPE) Oasis HLB and MCX (60 mg and 150mg)

Analytical methods

HPLC-MS/MS analysis

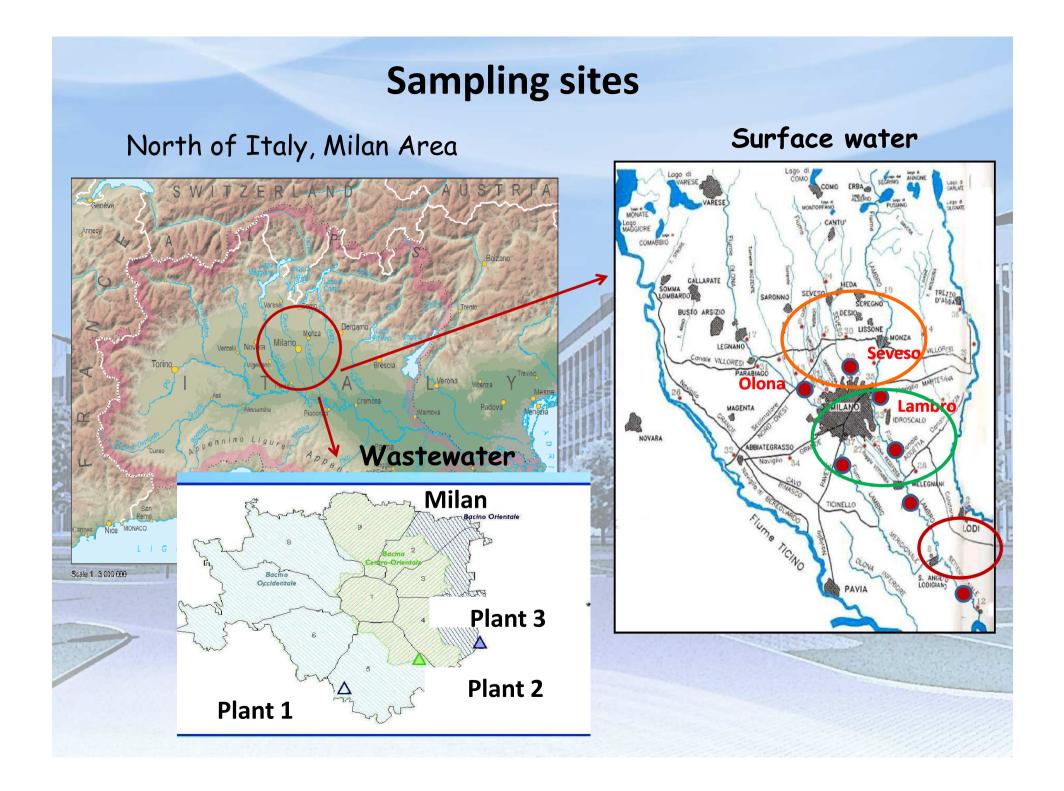
HPLC Column : C18 and HILIC phases Mass Spectrometer: AB-SCIEX API 3000 triple quadrupole, turbo ion spray source

HPLC-MS/MS analysis

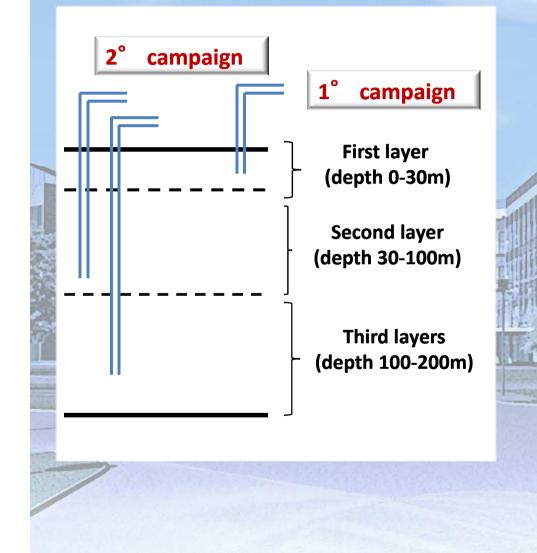
HPLC Column : Atlantis C18 Mass Spectrometer: Agilent 6410 Triple Quad LC/MS triple quadrupole, ESI source

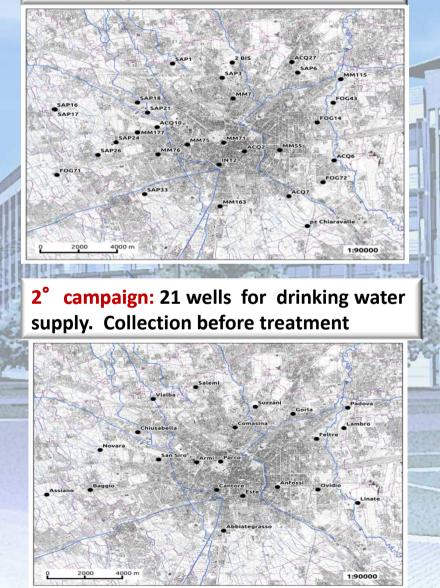
Analysis and Quantification

- Use of both **positive and negative** ionisation mode
- SRM analysis
- Two most abundant precursor/product ion transition
- Isotope dilution using the corresponding deuterated internal standards



Analytical methods - Results


Method Recoveries > 80% SD < 10% Limits of quantification: **IQL**= tens-hundreds pg/injected LOQ= wastewater 0.5-30 ng/L ; surface water 0.2-5 ng/L; ground water 0.1-1 ng/L $r^2 > 0.9995 \pm SD < 0.004$ Interday RSD% standard < 10% Intraday RSD% in wastewater < 10-15%



Sampling sites - Groundwater

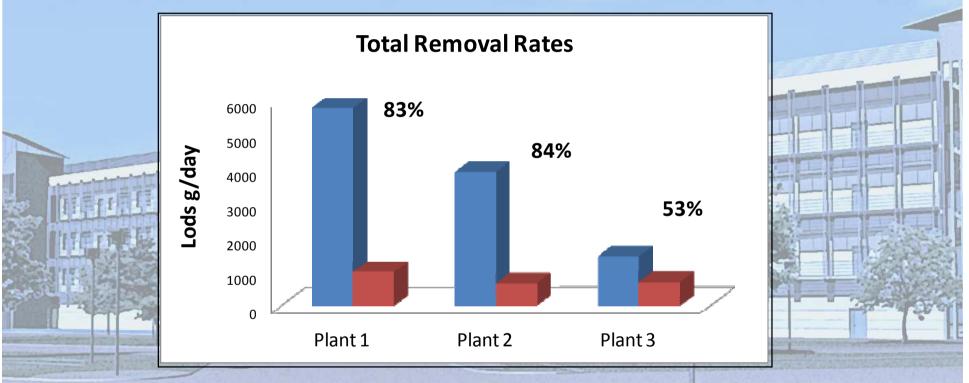
1° campaign: 30 piezometers, water not for drinking use

Removal of emerging contaminants in STPs

Water concentrations (ng/L) were multipled by the sewage treatments plants flow rates to obtain the total loads (g/d) entering the plant

Classes of	Raw wastewater	Treated wastewater	Removal	
compounds	(mean values of 7	(mean values of 7	rates	
	days, 3 plants)	days, 3 plants)		
	Loads (g/day)	Loads (g/day)	(%)	
Therapeutic Drugs	10043	2694	73	
Illicit Drugs	1413	106	92	A.C.
Disinfectants	706	40	94	AC
Sunscreens/UV	556	377	32	
Filters				COLOR D
PFOS/PFOA	12	12	0	135.25
Anthropic markers	101393	328	100	
Alkylphenols	1527	98	94	

Removal of emerging contaminants in STPs

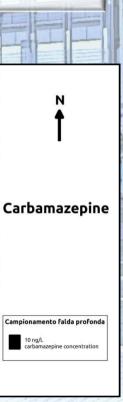

Removals depends on compounds and treatment

Plant 1 and 2: Activated sludge secondary treatment followed by disinfection Plant 3: Biofilters secondary treatment and UV disinfection

	Selected		Influent	Efflue	nt	Influen	t Efflue	nt	Influent	Effluent		Removal rate (%)		
	Pharmaceutio	harmaceuticals PLANT 1				PLANT 2		PLANT 3]	PLANT 1	PLANT 2	PLANT3	
			(7 sample	s) (7 samp	oles)	(7 sampl	es) (7 samp	les)	(7 samples	s) (7 samples	s)			
			(g/d)	(g/d))	(g/d)	(g/d)		(g/d)	(g/d)				
	Atenolol		731±189	9 100±1	15	593±53	3 161±4	-5	132±18	108 ± 105		86	73	18
-	Bezafibrate	e	66 ± 42	5±2		36±8	50±22	2	226±208	132±105		92 47	0	42
2	Carbamazepi	ne	138±40	73±1	2	104±1.	3 88±8	5	133±143	23±3			15	83
int	Ciprofloxaci	in	172±47	35±9)	229±33	5 51±1	6	53±34	30±8		80	78	43
-	Clarithromyc	cin	445±90	73±1	4	152±2	9 92±1	1	89±16	81±10		84	39	9
14	Furosemide	e	326±148	3 117±3	32	115±49	9 528±5	7	55±22	49±3		64	0	11
Re	Ibuprofen		668±192	2 1.2±0	.1	485±10	6 7±5.2	2	87±18	17±6		100	99	80
and a second	Hydrochlorothia	azide	323±127	7 417±4	03	139±1	9 289±2	8	38±7	13±9			0	66
	Ketoprofen		621±296			265±1′			86±21	17 ± 10			42	80
-	Naproxene		612±224			286±14			57±9	51±6		96	81	11
	Ofloxacin		106±28			191±2			47±29	39±11		53	59	17
	Ranitidine		36±11	1.3±0	.3	45±13	31±3		11±3	15±3		96	31	0
		2320	Antiputer	and the second		and the second		Jacob.	and and	The second the second	Toronto.	The second s		THE PROPERTY
	~ .	-44	1000		13103			201107	A second second			12.2 1 1.4	A DECEMBER OF	
	Selected	In	luent	Effluent	In	fluent	Effluent	L	nfluent	Effluent			oval rate (,
	SunScreens/		PLAN			PLAN		, _	PLAN		PL.	ANT 1 H	PLANT 2	PLANT3
1	UVFilters			(7 samples)	,	amples)	(7 samples)	(7	samples)	(7 samples)				
		(g/d)	(g/d)	((g/d)	(g/d)		(g/d)	(g/d)				
	PBSA	99.2	2±11.3	65 ± 7.8	149	.3±16.2	94±10.3	3	1.3±9.6	18.4 ± 2.6		35	37	41
	BP-4	212.	0±17.3	61.7±8.3	215	.9±23.1	123.2±17.3	1	8.9±5.9	13.4±2.1		71	43	29
	BP-3	24.	8±4.2	-	14	4±3.5	-	3	5.5 ± 2.2	0.3±0.1		100	100	92

Removal of emerging contaminants in STPs

Therapeutic drugs: different removals among STPs



Plant 1 and 2: Activated sludge secondary treatment followed by disinfection

Plant 3: Biofilters secondary treatment and UV disinfection

Ground Water Contamination

1:90000

Conclusions

✓ Assessment of the environmental occurrence of different classes of emerging pollutants

✓ Study of fate in STPs depends on chemicals structure and type of treatment adopted

 Mass Balance calculation allowed the identification of various sources of contamination

✓ A different pattern of contamination among groundwater layers was observed

Thanks

Ettore Zuccato Roberto Fanelli Renzo Bagnati Enrico Davoli Manuela Melis Paolo Camporini Marinella Palmiotto Metropolitana Milanese and STPs personnel

Mario Negri Institute for Pharmacological Research, Milan, Italy

Project supported by Fondazione Cariplo (grant 2009-3468-2009-3513)

Thanks for your attention!

