

A NEW SCIENTIFIC SOFTWARE APPROACH FOR THE ROUTINE ACCURATE MASS SCREENING

G. Bondoux , J.M. Joumier, A. Gledhill Waters

How is Residue Screening Classified?

- Targeted screening
 - Selective acquisition &/or processing modes
 - Well defined target list of analytes
- Non-targeted screening
 - Non selective data acquisition method.
 Acquired data can be used for
 - Checking for the presence of compounds from a (large) library
 - Finding compound not present in the library, maybe an unknown or new chemical structure. Structural elucidation required

S POSSIBLE.

Advantages of HR-MS screening?

- Over recent years use of high resolution mass spectrometry has gained in popularity as a screening tool in the food and environmental sector
 - Ability to perform non-targeted analysis
 - Ability to perform historical (retrospective) data review
 - Ability to perform full spectral analysis
 - Ability to screen for larger number of compounds and adducts
 - Increased specificity in complex matrices
 - ✓ Elucidation of unknowns ?

Current Guidelines for Pesticide Analysis (food safety)

EU SANCO/12495/2011 (implemented Jan 2012)

- Guidance criteria for method validation and analytical quality control (AQC)
- Primarily intended for official control of pesticide residues in food and feeds
- Covers screening methods
- Industry benchmark for pesticide residue analysis
 - and in the lack of specific guidelines within other areas of residue analysis

SANCO/12495/2011 – performance criteria -1

- Sensitivity in line with the relevant Regulatory limits
 - MRLs / MRPLs / RCs / ALs / ADIs etc...
- Applicability of the screening method is defined by the false non-compliant (positive) and false compliant (negative) rates
 - A low false negative rate is critical for screening assays to avoid missing MRL violations
 - **Tolerance ≤ 5%** false negative rate
 - A low false positive rate is important for screening assays to reduce costly quant / confirmatory analysis
 - **Desirable ≤ 5%** false positive rate
- Mass accuracy tolerance = ≤5 ppm
- Mass resolution tolerance = ≥20k (FWHM)
- Retention time mandatory for confirmation

Challenges:

- One single chemical entity leads to multiple MS peaks, at the same retention time
 - The parent ion
 - Isotopes
 - Adducts
 - Fragments
- Multiple co-elutions in real samples
- Possible presence of isomers
- Extremely complex data sets!
- Using only the exact mass / RT to determine to presence of a contaminant may lead to too many false positives!
- Need to use isotopes, adducts, fragments... for compounds determination

Surface water MS data. 44829 peaks are detected

Introducing a new screening solution for targeted and non-targeted analysis using HR-MS

WATERS PESTICIDE SCREENING APPLICATION SOLUTION

Pesticide-Based

Installation

Specifications

A comprehensive solution for high-throughput, multi-residue pesticides screening.

rs Corporation The first comprehensive turnkey solution for routine screening

WATERS PESTICIDE SCREENING APPLICATION SOLUTION

A comprehensive solution for high-throughput, multi-residue pesticides screening.

DisQuE[™] Dispersive Sample Preparation Kit

Fast, simple pesticide extractions

PREPARATION

I-Class System High resolution separations of trace analytes

SEPARATION ->

Xevo G2-S QTof Accurate mass measurements for precursor and product ions

DETECTION

UNIFI Scientific Library The ultimate reference resource

→ INTERPRETATION

High Resolution Chromatographic Separations: (Pw ~3-4 s with 12 points)

- Complex separation
 - A successful screening starts with the chromatography
- Minimizing dispersion to enhance

'S POSSIBLE.™

WATERS PESTICIDE SCREENING APPLICATION SOLUTION

A comprehensive solution for high-throughput, multi-residue pesticides screening.

Xevo G2-S QTof Inclusion of StepWave – For Ultimate Sensitivity THE SCIENCE OF WHAT'S POSSIBLE."

Waters

Xevo G2-S QTof Accurate mass measurements for precursor and product ions

DETECTION

Sensitivity gain with stepwave: $\sim 10 \text{ x}$

WATERS PESTICIDE SCREENING APPLICATION SOLUTION

A comprehensive solution for high-throughput, multi-residue pesticides screening.

Data Treatment

Overview

Surface water MS data. 44829 peaks are detected

The Component Approach

Waters The science of what's possible.™

The software organises the data across all channels into components

The Component Approach

ID	Mass	RT	Area	Isotopes	Fragments	Adducts
1	206.1242	1.53	1220	2	4	H+
2	545.0218	1.89	3029	3	8	H+, Na+
3	376.9867	2.13	2363	3	7	H+, Na+
4	252.1921	2.62	1873	2	9	H+
5	259.1102	3.20	3294	3	3	H+
6	462.0824	3.65	1491	2	5	H+
7	328.0492	4.11	3842	3	4	Na ⁺

The software organises the data across all channels into components

Waters

Data Processing Workflow

• Waters The science of what's possible.*

Scientific Library

Comprehensive Scientific Library

- Screening experiments are dependent on the quality of the libraries
- Libraries already available:
 - Over 2000 entries of which around 500 compounds contain method related information (RT, m/z for precursor and fragment ions)
- Easy to input your data
 - UNIFI can use Excel spreadsheets
- Critical information that is used for ID process
 - Name (chemical, common, marker residue definition)
 - Chemical formula
 - Structure
 - Retention time
 - Accurate mass (precursor and product ions)
 - Fragment ion(s)
 - Isotopic patterns
 - Isotope intensity
 - Expected ion ratios
 - Theoretical spectra

Data Review

Data Review Two Key Workflows

Non-targeted workflow

- Obtain a summary of the identified compounds that are present (and absent) and determine concentration
- Provide a list of all compounds that meet user criteria (retention time, accurate mass measurement of precursor and fragments, adducts found, isotope ratios, user-defined limits)
- Provide a list of spurious results (e.g. RT & accurate mass measurement shifted, isotope ratios questionable..)

Summary / Overview of the Results					
Present & Absent. Quantity.	Compounds that need reviewing				

Review: Summary Page

📚 Waters UNIFI - ASMS Pest QuanQual: Analysis Center 🔤 😰								
🔲 🔽 🔠 🛨 🚮 My Work	Relcome to UNIFI	🚔 ASMS Pest QuanQual: An 🗙		Search folders 👂 🗍 🛞				
Review Investigate Report								
Result Summary								
 Result Summary Workflow Workflow Summary Batch Overview Booult Summary IDs with no flags - summary IDs with no flags - details IDs with flags - quan IDs with flags - details Excluded targets 	Jit Summary ection Unknown in Red Pepper 2 Italiana is Ded Descent mponents IS184 Components Review all components in this inject IS184 Components Review all components in this inject Review the identified Components in injection. Review Image: Review the identified components in injection. Review Image: Review	n this	15184 = Total numbe components found sample	er of in				
	Investigate							
Administrator, UNIFI [Administrator]				 Sector 				

Data review for non-targeted analysis Fragment ion identification

Review: Positively Identified: Data Confirmation

3	🝃 Waters UNIFI - ASMS Pest QuanQual: Analysis Center									
	Со	mponent Summary 🔻				View: *F and	d E Qual View 1	•	* # (
1		Component name 1 🔺	Expected RT (min)	Observed RT (min)	Mass error (ppm)	Expected Fragments Count	Identified High Energy Fra	agments	Adducts	Isotop
v	1	Atrazine	7.53	7.46	-1.42	2	2	2	+H	
R	2	Azoxystrobin	8.47	8.44	-1.49	3	3	1	+H, +Na, +K	
	3	Chlortoluron	7.26	7.23	0.61	C	0	0	+H, +Na, +K	
	4	Dicrotophos	4.11	4.21	0.41	:	3	3	+H, +Na, +K	
	5	Diuron	7.71	7.64	0.05	1	1	1	+H, +Na	
	6	Fenpropimorph	11.52	11.63	1.09	1	1	1	+H	
	7	Hexazinone	6.63	6.60	1.80	2	2	2	+H, +Na, +K	
	8	Metolachlor	9.33	9.28	-2.16	2	2	2	+H, +Na, +K	-
	4	••		~~~	~~~	,	<u> </u>	î		•
										•
Chr Item Char			Ch	romatograms	5, % 🖩 🦄 🔸 🖟	Spectra 🔻			5 🖬 🗟	- +
			n name: Unknown in Red Pep annel name: Integrated : Smoo	per 2 🔗 🕺	Item name: Unknown in Rec Description: Unknown in Re	d Pepper 2 d Pepper			* × *	
			Intensity [Counts]	50000- 0- 5	10 15	₹ 5e+05- 2.5e+05- 112.0755 0 100	238 Di 398 296.13665 193.02560 200 300	¹⁹³⁵ 387.14193	467.16853 54 500	45.17181 *
8	🗿 Administrator, UNIFI [Administrator] 😵 🖉 🔕 🖂									

Review: Positively Identified: Low & high energy data for all adducts

Review: Positively Identified: Quantification Results

Review: Components with Flagged Values

Looking for Unknown Compounds

Supporting Software Tools

Managing the Unidentified Candidate List

Waters THE SCIENCE OF WHAT'S POSSIBLE.™

©2012 Waters Corporation

Data Review Two Key Workflows

Unknown Components

<u>Filter Data</u>: Halogen searching, Neutral loss, mass defect filter...

> Binary Compare: Sample A versus Sample B

Elucidate Structure

Add to Scientific Library

Statistical Review

15,500 Unknowns!!

- Reduce the unknown component list use of filters (halogen, neutral loss, mass defect filters...), sample comparison, statistical analysis
- Elucidate structure seamlessly Full Toolset integrated into UNIFI
- Potential to automatically add IDed unknown to the Scientific Library

Looking for Unknown Components...?

... Use a Filter Approach

Candidate list has been reduced from 15,000 to 50 by using halogen filtering

Waters The science of what's possible.™

i Waters UNIFI - ERA 20 Quan + Screen: Analysis Center		
🔲 🕶 🔡 👻 🚮 My Work 🌍 Welcome to UNIFI	🙏 ERA 20 Quan + Screen: A X	Search folders 👂 🛅 🕡
Review Investigate Report		
🟫 🗢 Review Results 🔹	🖉 Limits 🛫 🗐 Process 👻	🕼 Edit 👻 🌼 Tools 💌 📴 🛃 File 💌
Injections and Components - 41	Vinknown Red Pepper 1 Sample position: 1:28 Replicate: 1 Candidate Mass 250.9995 My new view	× Filter Data
1		1
Injections 📑 🕂 🖛 🗏	Component Plot • View by Retention Time • III. 🐴 • 🚸 📼 🖳	Settings 🚳 👻
Name Type Acquisition status Limit status Sampl	Item name: Unknown Red Pepper 1	Injections:
1 Unknown Red Pepper 1 💱 Complete	4.29 20000 - Candidate Mass 445.2545	Common •
Unknown Red Pepper 2 Z Complete		High level halogen
Unic	entified	
con	lidatoc	
Call		
	8.67 Candidate Mass 329.0041	
	5000-	
	6 Candidate Mass 250.9995 Candidate Mass 371.1462 7.53	
	Candidate Mass 833.3165	
	3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11	
	Retention time [min]	
Components (Unknown Red Pepper 1, Count: 37)	Chromatograms 🖬 🗞 🖬 🦹 🔹 💠 🗖 Spectra 🔹 🛤 🖼 🛬 💠 🗖	
8 Candidate Mass 909.2617	Item name: Unknown Red Pepper 1	
9 O Candidate Mass 903.2529	No data to display. Description: Unknown Red Pepper 1 320 00/07	
10 O Candidate Mass 833.3165		
11 O Candidate Mass 901.2207	250.9951 /452.250.9951 /452.250.9951	
12 O Candidate Mass 348.9890		
13 O Candidate Mass 250.9995		
14 Sandidate Mass 329.0041	1 200 400 000 000 1000	
15 O Candidate Mass 350.9857	Description: Unknown Red Pepper 1	
16 Candidate Mass 327.0071	₩ 2.5e+05- 1 ^{-98,98323}	
Candidate Mass 638.8061		
Candidate Mass 521.7974	293,12249 395,11078 829,38660	
20 Q Candidate Mass 552/2550	1 ⁻³ 0 - ↓ - ↓ + ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 	
21 Candidate Mass 962.9884	m/z	Apply Reset
Administrator, UNIFI [Administrator]		<u>i</u> o o o

©2012 Waters Corporation

Searching external libraries in the elucidation Toolset Online search MassBank

WATERS PESTICIDE SCREENING APPLICATION SOLUTION Summary

- Waters has introduced the new Pesticide Application Screening Solution
 - Chemistries: pesticide-specific installation specs, sample prep, columns
 - Hardware: ACQUITY UPLC I-Class, Xevo G2-S Qtof MS
 - Software: UNIFI IntelliStart, experimental LC and MS methods, scientific library, customised screening reports
- Support routine analysis of food safety and environmental screening: pesticides,
- The pesticide solution is flexible: can be modified & adapted
- Tools to help you meet the regulatory requirements for routine accurate mass screening
 ✓ The most comprehensive routine application solution for food and environmental screening