

Wastewater Reuse Applications and Contaminants of Emerging Concern

Limassol, Cyprus, 13-14 September 2012

Use of Advanced Oxidation Technologies to Destroy Contaminants of Emerging Concern in Water Treatment and Reuse Applications

Dionysios (Dion) D. Dionysiou

Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio, USA

NIREAS-International Water Research Center, University of Cyprus,

cleanWater

Nicosia, Cyprus

Email: dionysios.d.dionysiou@uc.edu

But credits go to :

Former graduates, current students and collaborators

- Dr. Maria Antoniou (Cyanotoxins, TiO₂ Photocatalysis)
- Dr. Miguel Pelaez (Cyanotoxins, VLA Photocatalysis)
- Dr. Chun Zhao, Ph.D., visiting scholar, Chongqing University, China
- Xuexiang He, Ph.D. student, University of Cincinnati, USA
- Changseok Han, Ph.D. student, University of Cincinnati, USA
- Xiaodi Duan, Ph.D. student, University of Cincinnati, USA
- Helen Barndok, visiting Ph.D. student, Universidad Complutense de Madrid, Spain
- Dr. Armah A. de la Cruz and Dr. Jody A. Shoemaker (US EPA)
- Dr. Polycarpos Falaras, Athanasios Kontos, Vlassis Likodimos, Anastasia Hiskia, & Groups (Demokritos Research Center, Greece)
- Dr. Kevin O'Shea (Florida International University)
- Dr. Despo Fatta-Kassinos and group (University of Cyprus)
- Dr. Tony Burn, Dr. Patrick Dunlop (University of Ulster, Northern Ireland)
- Dr. Hyeok Choi and Dr. Yongjun Chen (Nanotechnology, Membranes, AOTs)
- Javed Ali Khan, Noor Samad Shah, and Sanaullah Khan, visiting scholars, Ph.D. students, the University of Peshawar, Pakistan

Acknowledgements

Concerns in Surface Water Treatment and

Treatment of Wastewater for Reuse Applications

- Microorganisms
- Trace Organic Contaminants
 - Synthetic Organic Chemicals (SOCs)
 - > Cyanotoxins

- Pharmaceuticals and Personal Care Products (PPCPs)
- Endocrine Disrupting Compounds (EDCs)
- > Pesticides
- Antibiotics

Common characteristic of trace organic contaminants

- Many are non-biodegradable
- Many are Hydrophilic

Alturki, et al. 2010. *J. Membrane Science* 365 (1-2): 206-215. Drewes, et al. 2003. *Water Research* 37 (15): 3612-3621. Heberer, et al . 2002. *Water Sci. Technol.* 46(3): 81–88.

Many are of relatively small molecular weight

HABs Contamination Events: North America

Pictures Courtesy: Gerry Pinto and Chris Williams (Jacksonville University Manatee Research, GreenWater Labs./ CyanoLab, Florida), Juli Dyble (NOAA), and John Lehman (Univ. Michigan).

Lake Erie Near South Bass Island, 8/5/2009 (*Microcystis*)

http://www.epa.ohio.gov/portals/35/ inland_lakes/PHOTO%20GALLERY%200F% 200HIO%20HABs.pdf

Grand Łake, OH, June 15, 2010

http://www.dailystandard.com/archive/pic t_single.php?rec_id=11403

Binder Lake, Iowa, Total [microcystin]=40 μg/L

http://toxics.usgs.gov/highlights/algal_toxins/ Graham, 2010, Environmental Science and Technology, 44 (19):7361–7368

The southern tip of Pelee Island, Ontario, Canada. Sep. 4, 2009.

http://www.surfriderlakemichigan.org/news/

HABs Contamination Events: Other Countries

Blue green-algae bloom covering 377,000 sq km of the **Baltic Sea (European Space Agency's Envisat satellite** image). Lack of wind and prolonged high temperatures had triggered the largest bloom since 2005.

Baltic Sea, Dec 2008

Lake Taihu, China

http://www.cop.noaa.gov/stressors/extre meevents/hab/curre abs.aspx

http://news.bbc.co.uk/2/hi/science/nat

UV/TiO₂: Observed MC-LR sites of hydroxyl radical attack[#]

*Song et al., Environ. Sci. Technol, 40 (2006) 3941

Site C: Diene Bonds[#]

Visible Light Activation of TiO₂

- Explore Solar Driven TiO₂-based Water Treatment Technologies
 - Solar light: sustainable source of energy.
- Band-Gap Narrowing of TiO₂ for Visible Light Activation
 - Metal-doping (Pt, Ag) and non metal species like N, F, S, C.

UV+vis

Sato, <u>Chem. Phys. Lett</u> 123 (1986) 126; Burda et al., <u>Nano Lett</u>. 3 (2003) 1049; Bacsa et al., <u>J. Phys. Chem</u>. 109 (2005) 5994; Wu et al., <u>Appl. Phys. A</u> 81 (2005) 1411.

Asahi et al., <u>Science</u> 283 (2001) 269; Irie et al., <u>J. Phys. Chem. B</u> 107 (2003) 5483.

Physicochemical Properties

Material	S_{BET} (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Porosity (%)*	Crystal phase	Crystal size (nm)**	D (101)***
P25 film	57	0.303	36	anatase (75%), rutile (25%)	28	3.52
R=1	91	0.1375	35	anatase	14	3.52
R=3	121	0.1984	44	anatase	12	3.51
R=5	136	0.2347	48	anatase	9	3.50

* Based on pore volume and 3.9 g/cm³ of anatase density

** Based on XRD using Scherrer's equation

*** Based on Bragg's Law

□ Structural properties significantly improved with the addition of fluorosurfactant compared to P25.

Mesoporous materials with pore size controllability during synthesis.

■ Narrow pore size distribution indicates good homogeneity of the pores even at a low surfactant ratio.

UV-vis spectra

Effective optical band gap (E_g^{eff})

 $E_g^{eff} = 1239.6 / \lambda_g^{eff}$ Sun et al., Langmuir., 2005, 21, 11397-11403

Band-gap ("effective") reduction for NF-TiO₂ films; shift in the absorbance spectra.

 Combination of nitrogen and fluorine impurity can induce the appearance of an absorption band in the visible region.

XRD

Synthesized films are of anatase phase.

 No dopant-related crystalline products under the analyzed conditions.

Nitrogen and fluorine atoms are found either in the interstitial or substitutional sites of the TiO₂ structure.

XPS Spectra

Material	F(%)	N(%)
R=5	1.9	1.5

• Substitutional N-doping introduces energy states above the valence band while interstitial N-doping generate localized intergap states with π character; both induce visible light activity.

 Calcination at high temperatures favors the formation of interstitial N species.

Kontos, et al. Phys. Stat. Sol (RRL). 2008, 2, 83-85

 Role of nitrogen and fluorine needs to be understood case by case. Preparation procedures leads to different observations in XPS data.

Electron Paramagnetic Resonance (EPR)

EPR analysis at a) 10 K and b) room temperature.

At room temperature, peak at g=2.0030, $g\sim2.019$ and $g\sim1.988$ related to N spin species; enhanced under light illumination.

□ Reference TiO_2 showed weak peaks EPR lines indicative of residual surface oxygen radicals only and not affected upon illumination.

□ Similar behavior at 10 K.

□ Dominance of the intense paramagnetic N species over Ti^{3+} ions; F doping promotes N incorporation in TiO_2 lattice.

Photocatalytic Evaluation of NF-TiO₂ Films

■ MC-LR degradation rate of reference TiO₂ and NF-TiO₂ films at pH 3.0 under visible light (λ >420 nm) irradiation for 180 min.

Initial MC-LR concentration: 500 μ g/L. Visible light intensity of 7.81 x 10⁻⁵ W cm⁻².

Similar degradation rates were obtained when reusing the catalyst after 3 cycles under visible light.

□ High mechanical stability of the films.

• Loss of catalyst was negligible during washing and reusing. Nitrogen and fluorine dopants are incorporated into the TiO_2 lattice.

Composite Mesoporous NF-TiO₂-P25 Films

Synthesis Approach:

Surfactants as templates and low loading Degussa P25 powders (i.e., 5, 15 g/L in the sol) as fillers*

* Balasubramanian, et. al., J. Mat. Sci., 38 (2003) 823.
Chen and Dionysiou, Appl. Catal. B: Environ., 62 (2006) 255.
Chen and Dionysiou. Appl. Catal. A: General., 317 (2007) 129.

Balasubramanian, et.al, *Appl. Catal. B: Environ.*, 47 (2004) 73. Chen and Dionysiou, *J. Mol. Catal. A: Chem.*, 244 (2006) 73. Chen and Dionysiou, *Appl. Catal. B: Environ.*, (2008).

Physicochemical Properties of NF-TiO₂-P25 Films

Material	S _{BET} (m²g⁻ ¹)	Pore volume (cm³g-¹)	Porosity (%)	Crystal phase	Film thickness per layer (nm)
NF-TiO ₂ only	89.77	0.149	36.75	anatase	648.7
5 g/L P25	111.47	0.153	37.37	anatase, rutile	777.9
15 g/L P25	100.38	0.211	45.14	anatase, rutile	981.6

□ Structural properties significantly improved with the addition of TiO₂-P25 nanoparticles.

■ Narrow pore size distribution with a broad large pore with 15 g/L P25. Formation of P25-associated larger pores.

MCs Removal with NF-TiO₂

The degradation process is a function of the surface interaction between each MC and the photocatalyst (Net charge of the toxin and hydrophobicity).

	MC-RR	MC-YR	MC-LR	MC-LA	
Net charge, pH 3.0	+	—	—	—	
Molecular weight	1038	1044	995	910	
		Increased hydrophobicity			

General structure of a microcystin (MC)

α Initial MCs molar concentration: 0.5 μM, pH 3.0.

CYN Removal

No significant adsorption of CYN in any synthesized film. Very hydrophobic and overall positively charged under acidic conditions.

Enhanced photocatalytic degradation of CYN with higher P25 loading under solar light.

Formation of Radical Oxygen Species (ROS) in TiO₂ photocatalysis

- Formation of ROS with non-metal doped TiO₂ under visible light. Possible involvement of different mechanism in which OH radicals may not be the primary oxidizing species.
 - Nature of the oxidation mechanism is ambiguous.
 - Hole generated in VB may not oxidize surface hydroxyls to form •OH.

Selected Organic Contaminants

(4 µmol L⁻¹ each in mixture):

Carbamazepine (CMP)

- Pharmaceutical
- Persist and accumulate in organic components

> Atrazine (ATR)

- Herbicide
- Persistent groundwater contaminant
- Banned in the European Union
- Endocrine disrupting effects

> Caffeine (CAF)

- Frequently detected in the environment
- Potential effects on fish

Some Notes

- Development of new AOPs or improvements of existing AOPs are on going efforts with many challenges.
- New advances in the field of nanotechnology and reaction engineering show promising results and encouragement for the removal of CEC but detailed mechanistic aspects need to be understood.
- Effective coupling of processes can yield targeted removal efficiencies of CEC but optimization schemes are necessary for a specific source water.

Acknowledgements

- Cyprus Research Promotion Foundation through Desmi 2009-2010 which was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation (Strategic Infrastructure Project NEA ΥΠΟΔΟΜΗ/ΣΤΡΑΤΗ/0308/09)
- NSF Collaborative Research (US-Ireland) (Number CBET-1033317)
- "Clean Water" Project (Demokritos; FP7-ENV-NMP-2008-227017).

QUESTIONS?

