

ADVANCED OXIDATION OF ESTROGENS, ANTIBIOTICS, AND OTHER WATER EMERGING CONTAMINANTS AND THE POTENTIAL FOR SOLAR DETOXIFICATION AND WATER REUSE

24

Gianluca LI PUMA

Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, UK

 Yangtze river with red water near Chongqing (China Press) Saturday 9th Sept 2012

Emerging Contaminants of Concern

- Xenobiotics such as drugs, pesticides, pharmaceuticals and EDC have been labelled as Emerging Contaminants
- Sources are industrial and domestic effluents, agricultural run offs, municipal sewage.
- In WWTP ECs are discharged in un-metabolized form or as metabolites
- WWTP treatment technology are very often unable to entirely degrade persistent ECs
- Accumulation in the aquatic environment where they may cause ecological risk, such as interference with the endocrine system of higher organisms, microbiological resistance and accumulation in soil, plants and animals
- Alternative advanced technologies are needed for treatment of WWTP effluents

Loughborough

Advanced Oxidation: Solar Photo-Fenton Oxidation Process

- Oxidation of ECs in the presence of light, iron salts and hydrogen peroxide
- Effective for the removal of ECs
- pH < 4 (to prevent iron precipitation)
- Treatment of non-acidic wastewater is too costly because of pH adjustment
- Increase in water salinity

Loughborough

Environmental Nanocatalysis & Photoreaction

Engineering – Department of Chemical Engineering

Solar Photo-Fenton Oxidation Process Secondary biological effluent, El Ejido WWTP, Almeria, Spain

Loughborough

University

bH 4

Neutral pH

Klamerth et al., Catal. Today 161(2011) 241

Solar Photo-Fenton Oxidation Process on Immobilized Iron

- TiO₂/Fe oxide immobilized on PVF
- Degradation of a mixture of 14 ECs spiked to WWTP in two CPC (8.5 L) at mild pH
- Consecutive runs with 3.1 mM H_2O_2
- Contaminants with Fe(III) chelating groups degraded at faster rates
- Catalyst was active for 20 days without loss of efficiency

entration of c2hd3 (kmokm3) May 31, 20 FLUENT 6.2 (3d, segregated, spe, lar

Photocatalytic Reactors: UV Lamp and Solar Reactors

Rotating Disk (Dionysiou)

Fountain (Li Puma)

Parabolic Trough (PSA)

Compound Parabolic Collector (CIEMAT) (

r Double Skin (Wolkswagen, Banhemann)

Falling Film (Temine)

Comparison of Solar Photocatalytic Reactors Efficiencies

Bandala and Estrada, J. Solar Energy Eng. 2007, 129, 22.

- Four geometries were tested: Compound parabolic collector (CPC), V-through collector (VTC), parabolic trough collector (PTC) and flat tubular collector (FT)
- TiO2 (P25) slurry suspension

Loughborough

Compound Parabolic Collector, Commercial Installation, Colombia

- Cross between trough concentrators and one sun systems
- Best optics for non-concentrating systems
- Have the advantage of both systems
- Uses both direct and diffuse sunlight
- High pressure and temperature is allowed
- No vaporisation problems
- Filming of the tube wall can be a problem

Courtesy of Fiderman Machuca, Universidad del Valle, Cali, Colombia

Environmental Nanocatalysis & Photoreaction

Engineering – Department of Chemical Engineering

Solar Compound Parabolic Collector (CPC) – Ray Tracing

Colina, Machuca, Li Puma, Environ. Sci. Technol. 43 (2009) 8953

Solar Direct Radiation

Solar Diffuse Radiation

Loughborough University

Courtesy of Jose Colina, Universidad de Cartagena, Cali, Colombia

Photocatalytic Mineralization of a Commercial Mixture of Herbicides (2,4-D, Diuron, Ametryne) in a Pilot-Scale Solar CPC

Colina, Machuca, Li Puma, Environ. Sci. Technol. 43 (2009) 8953

Reactor

Experimental conditions	
Catalyst load, g/L	0
Initial pH of solution	9
System total volume, L	20
Reactor volume, L	10
Tube inner diameter, mm	32
Average flow rate, L/min	30
Latitude of the site	3°3

LoughboroughUniversity

Photocatalytic Treatment of Emerging Contaminants

- Optimal photocatalyst concentration for industrial wastewater treatment in current solar photoreactor designs is several hundreds of mg/L
- However, the elimination of ECs, which are present at extremely low concentration may be accomplished at much lower catalyst concentrations
- If the catalyst concentration is lowered below the optimum
 loss of useful photons lower reactants conversions
- Laboratory and solar pilot scale experiments were performed with real WWTP effluents to evaluate the kinetics of photocatalytic degradation of 52 ECs under realistic (ppb) concentrations

Photocatalysis & Photoreaction Engineering

Department of Chemical Engineering

Photocatalysis & Photoreaction Engineering Department of Chemical Engineering

Radiative Transfer Equation

$$\mu \frac{dI_{\lambda}(x,\mu)}{dx} + \underbrace{\kappa_{\lambda}I_{\lambda}(x,\mu)}_{\text{Absorption}} + \underbrace{\sigma_{\lambda}I_{\lambda}(x,\mu)}_{\text{Out-scattering}} = \underbrace{\frac{\sigma_{\lambda}}{2} \int_{\mu'=-1}^{1} I_{\lambda'}(x,\mu') p(\mu' \rightarrow \mu) d\mu'}_{In-Scattering}$$
boundary conditions
$$I_{\lambda}(-W,\mu) = I_{0}\delta(\mu - \mu_{0}) + \Gamma_{1}I_{\lambda}(-W,-\mu) \qquad (\mu > 0)$$

$$I_{\lambda}(L_{cell},-\mu) = \Gamma_{1}I_{\lambda}(L_{cell},-\mu) \qquad (\mu < 0)$$
HG phase function
$$(\mu = 2)$$

$$p_{HG,\lambda}(\mu_0) = \frac{(1 - g_{\lambda}^2)}{(1 + g_{\lambda}^2 - 2g_{\lambda}\mu_0)^{3/2}}$$

radiation flux

$$q_{\lambda}^{+}(-W) = 2\pi \int_{0}^{1} \mu I_{\lambda}(-W,\mu) d\mu$$
$$q_{\lambda}^{-}(-W) = 2\pi \int_{-1}^{0} \mu I_{\lambda}(-W,\mu) d\mu$$
$$q_{\lambda}^{+}(L+W) = 2\pi \int_{0}^{1} \mu I_{\lambda}(L+W,\mu) d\mu$$

Six-Flux Radiation Absorption-Scattering Model

 $\sigma =$

K =

Li Puma, et al., Environ. Sci. Technol. 38 (2004) 3737; Brucato et al., AIChE J., 52 (2006) 3882; Li Puma and Brucato, Catal. Today 122 (2007) 78.

- Photons are either scattered or absorbed upon colliding a particle
- Scattering randomly follows one of the six Cartesian directions
- Fluid does not absorb radiation
- Uniform distribution of particles

Scattering Albedo

$$\omega = \frac{\sigma}{\sigma + \kappa}$$

Optical Thickness

$$\tau = (\sigma + \kappa)c_{cat}\delta$$

ed or
barticle
s one of
tion
ticles
$$\frac{\lambda_{\text{max}}}{\int_{\lambda_{\text{min}}} \sigma_{\lambda} I_{\lambda} d\lambda} / \frac{\lambda_{\text{max}}}{\int_{\lambda_{\text{min}}} I_{\lambda} d\lambda}$$

 $\frac{P_{\text{back}}}{P_{\text{back}}} \frac{P_{\text{pright}}}{P_{\text{forward}}} \frac{P_{\text{forward}}}{P_{\text{eft}}} \frac{P_{\text{forward}}}{P_{\text{down}}}$
 $P_{\text{eft}} \frac{P_{\text{down}}}{P_{\text{down}}}$
 $P_{\text{up}} = P_{\text{down}} = P_{\text{left}} = P_{\text{right}} = P_{\text{side}}$
 $\frac{4 P_{\text{side}} + P_{\text{forward}} + P_{\text{backward}} = 1$

Solar Compound Parabolic Collector (CPC) – Ray Tracing

Colina, Machuca, Li Puma, Environ. Sci. Technol. 43 (2009) 8953

$$LVRPA = \frac{\tau_{app}I_0}{\omega_{corr}(1-\gamma)} \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1-\omega_{corr}^2} \right) \exp(-\tau_{app}\xi^*) + \gamma \left(\omega_{corr} - 1 - \sqrt{1-\omega_{corr}^2} \right) \exp(\tau_{app}\xi^*) \right]$$
Apparent Optical Thickness
$$\tau_{app} = a\tau\sqrt{1-\omega^2}_{corr}$$
Snell's law (multiple ray reflections)
$$I_{0,refflected} = I_0 \psi^n$$

$$\delta = \sqrt{(x_{r+1}-x_r)^2 + (y_{r+1}-y_r)^2} \int_{(x_{r+1}y_{r+1})}^{y_{r+1}y_{r+1}} \int_{(x_{r+1}y_{r+1})}^{y_{r+1}y_{r+1}}} \int_{(x_{r+1}y_{r+1})}^{y_{r+1}y_{r+1}} \int_{(x_{r+1}y_{r+1})}^{y_{r+1}y_{r+1}} \int_{(x_{r+1}y_{r+1})}^{y_{r+1}y_{r+1}}} \int_{(x_{r+1}y_{r+1})}^{y_{r+1}y_{r+1}} \int_{(x_{r+1}y_{r+1})}^{y_{r+1}y_{r+1}}} \int_{(x_{r+1}y_{r+1})}^{y_{r$$

Radiation Absorption in Tubular and CPC Solar Photoreactors

Colina, Machuca, Li Puma, Environ. Sci. Technol. 44 (2010) 5112

 $LVRPA = \frac{\tau_{app} I_0}{\omega_{corr} (1-\gamma)} \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(-\tau_{app} \xi^*) + \gamma \left(\omega_{corr} - 1 - \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] dt = \frac{\tau_{app} I_0}{\omega_{corr} (1-\gamma)} \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(-\tau_{app} \xi^*) + \gamma \left(\omega_{corr} - 1 - \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] dt = \frac{\tau_{app} I_0}{\omega_{corr} (1-\gamma)} \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(-\tau_{app} \xi^*) + \gamma \left(\omega_{corr} - 1 - \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] dt = \frac{\tau_{app} I_0}{\omega_{corr} (1-\gamma)} \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(-\tau_{app} \xi^*) + \gamma \left(\omega_{corr} - 1 - \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] dt = \frac{\tau_{app} I_0}{\omega_{corr} (1-\gamma)} \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) + \left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \exp(\tau_{app} \xi^*) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) + \left(\omega_{corr} - 1 + \sqrt{1 - \omega_{corr}^2} \right) \right] \frac{\eta}{(1-\eta)R} \left[\left(\omega_{cor$

Optimum Catalyst Loading – Validation Against Literature

Colina, Machuca, Li Puma, Environ. Sci. Technol. 44 (2010) 5112

- CPC 70% higher radiation absorption than tubular reactor: agrees with data of degradation of oxalic acid (Bandala, 2004) and methylene blue (Arias, 2008)
- CPC requires 39% less catalyst to operate under optimum conditions
- Scattering albedo of TiO₂ (Degussa P25) under solar radiation is 0.88: Optimal catalysts TiO₂ concentration is 0.21 g/L in a 32 mm CPC **reactor** – agrees with experimental data of degradation of many pollutants (Malato, 2004); 2,4-DCP (Gimenez 1999); 4-CP (Guillard, 2003); PCP (Minero, 1996)

Secondary biological effluents El Ejido WWTP, Almeria, Spain - 89 contaminants detected by HPLC-QTRAP-MS, 52 were quantified (DOC = 13-23 mg/L, IC = 110-132 mg/L, COD = 43-63 mg/L)

Contaminant	C ₀ (ng/ L)	Contaminant	C ₀ (ng/L)	Contaminant	C ₀ (ng/ L)	Contaminant	C ₀ (ng/ L)
4-AA	1315	Citalopram HBr	17	Ibuprofen	726	Primidone	50
4-AAA	12702	Clarithromycin	54	Indomethacine	437	Propanolol	17
4-FAA	4617	Codeine	192	Isoproturon	172	Propyphen.	32
4-MAA	2824	Cotinine	287	Ketoprofen	428	Ranitidine	710
Antipyrine	681	Diazepan	68	Lincomycin	192	Salbutamol	81
Atenolol	1241	Diclofenac	4425	Mefenamic Acid	18	Simazine	704
Atrazine	305	Diuron	1081	Mepivacaine	28	Sulfadiazine	36
Azithromycin	69	Erythromycin	78	Naproxen	2968	Sulfamethazine	236
Benzafibrate	44	Famotidine	19	Nicotine	450	Sulfamethoxazol	999
Caffeine	17175	Fenofibric Acid	142	Norfloxacin	29	Sulfapyridine	131
Carbamazepine	114	Furosemide	100	Ofloxacin	1614	Terbutaline	85
Chlorfenvin.	29	Gemfibrozil	2622	Paraxanthine	17750	Trimethoprim	1661
Ciprofloxacin	305	Hydrochlorothia.	780	Pravastatin	75	Velafaxime	539

Pilot Scale Experiments: Sunlight Irradiation (PSA, Almeria, Spain)

Prieto-Rodriguez, et al., J. Hazard. Mat. 211-212 (2012) 131

- We followed the degradation of 16 ECs (90% of pollutant load)
- The remaining 36 ECs (10% of pollutant load) were represented as a cumulative concentration

PHOTOREACTOR CONFIGURATION 1

Loughborough

University

- •Two CPC modules with twelve, 32 mm O.D. Pyrex tubes per module – the same as in the laboratory scale reactor
- •Total irradiated volume = 22 L
- •Total irradiated area = 3.1 m²
- •Total volume in the system = 35 L

PHOTOREACTOR CONFIGURATION 2

- Two CPC modules with ten, 50 mm
 O.D. Pyrex tubes per module
- Total irradiated volume = 45 L
- Total irradiated area = 4.5 m²
- Total volume in the system = 60 L

Environmental Nanocatalysis & Photoreaction

Engineering – Department of Chemical Engineering

Treatment of WWTP Secondary Biological Effluent (El Ejido WWTP, Almeria, Spain) Prieto-Rodriguez, et al., J. Hazard. Mat. 211-212 (2012) 131

CONFIGURATION 1

CONFIGURATION 2

Loughborough University

Environmental Nanocatalysis & Photoreaction

Engineering – Department of Chemical Engineering

Radiation Absorption Optimization in Tubular and CPC Solar Photocatalytic Reactors

Colina, Machuca, Li Puma, Environ. Sci. Technol. 44 (2010) 5112

 Table 2. Radiation absorption in the pilot scale photoreactors estimated from modeling the

 CPC by ray-tracing coupled with the six-flux absorption-scattering model [17].

Loughborough

	Photoreactor I	Photoreactor II
TiO ₂ P25 loading [mg/L]	20	20
Inner tube diameter [mm]	29.2	46.4
Optical thickness, τ	0.86	1.36
Radiation absorbed per unit length [W/m]	12.6	36.9
Maximum rate of photon $absorption[W/m]$ ⁽ⁱ⁾	41.6	66.1
Radiation absorption efficiency	30.3%	55.8%

$$d = \frac{\tau}{(\sigma + \kappa)C_{cal}}$$

Radiation Absorption Optimization in Tubular and CPC Solar Photocatalytic Reactors of Any Diameter

Colina, Machuca, Li Puma, Environ. Sci. Technol. 44 (2010) 5112

Apparent Optical Thickness (max)

University

$$\tau_{app,\max} = a\tau_{\max}\sqrt{1-\omega^2_{corr}}$$

 $\tau_{\max} = (\sigma + \kappa) C_{cat} (2R_R)$

Environmental Nanocatalysis & Photoreaction

Engineering – Department of Chemical Engineering

LoughboroughUniversity

 Sol-gel deposition of TiO₂ on glass spheres

- Slurry and immobilized catalyst: Degradation rates appear to be similar
- But slurry reactor was not operated efficiently (optimum TiO₂ should be 0.2 g/ L).

Miranda-Garcia et al., Catal. Today 151 (2010) 107

Loughborough University

Solar Photocatalytic Ozonation

- BDDAB benzyldodecyldimethylammonium bromide
- DBS dodecylbenzenesulfonate
- BNS butylnaphtalenesulphonate
- BPA bisphenol-A
- 2,4-D 2,4-dichlorophenoxyacetic acid

Oyama et al., Solar Energy 85 (2011) 938

Photocatalysis & Photoreaction Engineering Department of Chemical Engineering

Estrogenic activity: E2 > EE2 > E1 and E3

Photocatalysis & Photoreaction Engineering

Department of Chemical Engineering

UVA and UVC Photolysis

Li Puma et al., Appl. Catal. B: Environ. 99 (2010) 388

	R ₁	R ₂ R	3
Oestriol	OH	OH H	ł
17α–eO	OH	H HC≡	≡C
Oestrone	=О	H F	ł
17β–Ο	Н	H I	H

- Basic steroid structure. Aromatic ring responsible for the absorption properties in the UV, due to π→π* transition at 200<λ< 250 nm
- Higher absorption and reactivity under UVC irradiation is expected from structural considerations
- Moderate degradation of estrogens with UVA, no degradation for estriol
- With UVC irradiation, photolysis highly increases for all components in the mixture. Much faster degradation of estrone

Photocatalysis & Photoreaction Engineering Department of Chemical Engineering

Degradation Kinetics of Estrogens Mixtures

Li Puma et al., Appl. Catal. B: Environ. 99 (2010) 388

Loughborough University

Estrogens Degradation in a Fountain Photocatalytic Reactor

Li Puma and Yue, Ind. Eng. Chem. Res. 40 (2001) 5162; Chem Eng. Sci. 56 (2001) 2733 and 56 (2001) 721

Prof. Li Puma with Fountain Photoreactor

- Umbrella shape unsupported water fountain
- High photocatalyst activation
- High oxygen mass transfer rate
- Can use both direct and diffuse sunlight

Integration of Advanced Oxidation and Biodegradation

Loughborough University

Oller et al., Sci. Total Environ. 409 (2011) 4141

Photo-Fenton and IBR: a-Methylphenylglycine (MPG)

Oller et al., Catal. Today 122 (2007) 150

"Solar Hydrogen" uses Renewable Natural Resources

Environmental Nanocatalysis & Photoreaction

Engineering - Department of Chemical Engineering

Photocatalytic Reforming of Glycerol on Pt/TiO₂

Daskalaki and Kondarides, Catal. Today, 144 (2009) 75

 $C_3H_8O_3 + 3H_2O \rightarrow 3CO_2 + 7H_2$

Loughborough

- Cell, cubical shape photoreactor irradiated by simulated solar light
- One-order of magnitude increase in the rate of H₂ evolution compared to pure water
- Stoichiometric production of H₂ and CO₂

Scale-up 3: Pilot Scale Solar Photoreactor

 Continuous production of hydrogen from glycerol wastewater @ 300 micromole/min - Prof. Li Puma – Loughborough University

Using Biomass Derivatives As Sacrificial Agents

- Carbohydrates from food manufacturing industries
- Cellulose from paper making
- Lactose from dairy industries
- Maltose from fermentation industries
- Sulfite refinery wastewater from gasoline desulfurization

Conclusions

- Solar powered advanced oxidation effective process for the treatment of FCs in WWTP effluents
- Large diameter CPC treat ECs efficiently using low catalyst concentrations
- Optimization of solar reactor for ECs treatment use lowest catalyst concentration and larger reactor diameter, related to the total pollutant load – lower cost of catalyst recycling
- More engineering pilot and large scale demonstration studies should be carried out at different scales -home/domestic, semiindustrial, industrial and municipal
- Photocatalytic reforming of biomass waste may provide an efficient and low cost method for production of renewable hydrogen from waste biomass

Acknowledgements

MINISTERIO DE CIENCIA E INNOVACIÓN

eor

Spanish Ministry of Science and Innovation EDARSOL project: CTQ2009-13459-C05-01

Solar-Hydrogen Grant

"Application of Nanotechnology in the Energy Business"

Prof. Kondarides, Verykios and Lianos at Patras University

Loughborough

Contact: Gianluca LI PUMA (g.lipuma@boro.ac.uk)

Environmental Nanocatalysis & Photoreaction Engineering -Department of Chemical Engineering, Loughborough University

Further details:

PCO of ECs in WWTP- Prieto-Rodriguez, et al., J. Hazard. Mat. 211-212 (2012) 131.
Solar photoreactor design - Colina-Marquez et al., Environ. Sci. Technol. 44 (2010) 5112.
PCO of Pesticides - Colina-Marquez et al., Environ. Sci. Technol. 44 (2009) 8953.
Advanced oxidation of estrogens - Li Puma et al., Appl. Catal. B: Environ. 99 (2010) 388
Photoreforming of waste: Daskalaki et al., Environ. Sci. Technol. 44 (2010) 7200